Advertisement

Abstract

We deal with matching and locating of patterns in forests of variable arity. A pattern consists of a structural and a contextual condition for subtrees of a forest, both of which are given as tree or forest regular languages. We use the notation of constraint systems to uniformly specify both kinds of conditions. In order to implement pattern matching we introduce the class of pushdown forest automata. We identify a special class of contexts such that not only pattern matching but also locating all of a forest’s subtrees matching in context can be performed in a single traversal. We also give a method for computing the reachable states of an automaton in order to minimize the size of transition tables.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BKR96.
    Biehl, M., Klarlund, N., Rauhe, T.: Algorithms for guided tree automata. In: Raymond, D.R., Yu, S., Wood, D. (eds.) WIA 1996. LNCS, vol. 1260, Springer, Heidelberg (1997)Google Scholar
  2. BMW91.
    Börstler, J., Möncke, U., Wilhelm, R.: Table Compression for Tree Automata. ACM TOPLAS 13(3), 295–314 (1991)CrossRefGoogle Scholar
  3. Bra69.
    Brainerd, W.S.: Tree Generating Regular Systems. Information and Control 14, 217–231 (1969)zbMATHCrossRefMathSciNetGoogle Scholar
  4. CKS81.
    Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  5. FS98.
    Fecht, C., Seidl, H.: Propagating Differences: An Efficient New Fixpoint Algorithm for Distributive Constraint Systems. In: Hankin, C. (ed.) ESOP 1998. LNCS, vol. 1381, pp. 90–104. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. Gol90.
    Goldfarb, C.F.: The SGML Handbook. Clarendon Press, Oxford (1990)Google Scholar
  7. LH92.
    LeCharlier, B., Van Hentenryck, P.: A Universal Top-Down Fixpoint Algorithm. Technical Report CS-92-25, Brown University, Providence (1992)Google Scholar
  8. Mor94.
    Moriya, E.: On two-way tree automata. IPL 50, 117–121 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  9. Mur96.
    Murata, M.: Transformations of Trees and Schemas by Patterns and Contextual Conditions. In: Nicholas, C., Wood, D. (eds.) PODDP 1996 and PODP 1996. LNCS, vol. 1293, pp. 153–169. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  10. MW95.
    Maurer, D., Wilhelm, R.: Compiler Design. Addison-Wesley, Reading (1995)zbMATHGoogle Scholar
  11. NS9.
    Neumann, A., Seidl, H.: Locating Matches of Tree Patterns in Forests. Technical Report 98-08, Mathematik/Informatik, Universität Trier (1998)Google Scholar
  12. Pod92.
    Podelski, A.: A Monoid Approach to Tree Automata. In: Nivat, M., Podelski, A. (eds.) Tree Automata and Languages, pp. 41–56. North Holland, Amsterdam (1992)Google Scholar
  13. PQ68.
    Pair, C., Quere, A.: Définition et Etude des Bilangages Réguliers. Information and Control 13, 565–593 (1968)zbMATHCrossRefMathSciNetGoogle Scholar
  14. SGYM98.
    Shankar, P., Gantait, A., Yuvaraj, A.R., Madhavan, M.: A New Algorithm for Linear Regular Tree Pattern Matching. Submitted to TCS (1998)Google Scholar
  15. Tak75.
    Takahashi, M.: Generalizations of Regular Sets and their Application to a Study of Context-Free Languages. Information and Control 27, 1–36 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  16. Tha67.
    Thatcher, J.W.: Characterizing Derivation Trees of Context-Free Grammars through a Generalization of Finite Automata Theory. JCSS 1, 317–322 (1967)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Andreas Neumann
    • 1
  • Helmut Seidl
    • 1
  1. 1.Department of Computer ScienceUniversity of TrierGermany

Personalised recommendations