Advertisement

Dynamic Planet pp 638-645 | Cite as

Definition and Realisation of the SIRGAS Vertical Reference System within a Globally Unified Height System

  • Laura Sanchez
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 130)

Abstract

The new SIRGAS vertical reference system is based on the determination of an equipotential reference surface W 0 within a global definition, i.e. optimally fitting the worldwide mean sea surface. The corresponding W 0 value (mean geopotential value over the total ocean surface) is empirically estimated using different combinations of global gravity models (EGM96, TEG4, GGM02S, EIGEN-CG03C) and mean sea surface models (CLS01, KMS04, GFSC00.1 and a series of annual models from 1993 to 2001 derived at DGFI from T/P). The results show the W 0 dependence on the GGM’s degree n, on the latitudinal extension, and on time. The recommended W 0 value (62 636 853,4 m 2 s −2) is derived from EIGEN-CG03C (n = 120) and referred to the epoch 2000.0. It differs from previous computations by 3 m 2 s −2 (e.g. Bursa et al. 2002, Bursa et al. 2004). A preliminary realisation of this new reference level is accomplished by transforming the existing South American classical height datums (defined individually at different tide gauges) through the combination of GNSS positioning, high resolution (quasi)geoid models and physical heights derived from spirit levelling and terrestrial gravity data.

Keywords

Global reference level W0 unified vertical reference system world height system height datum unification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen, O. B., A. L. Vest, P. Knudsen, (2004). KMS04 mean sea surface model and inter-annual sea level variability. Poster presented at EGU Gen. Ass. 2005, Vienna, Austria, 24–29, April.Google Scholar
  2. AVISO (1996). AVISO user handbook. Merged Topex/Poseidon products (GDR-Ms). CLS/CNES, AVI-NT-02-101-CN. 3rd Ed., July.Google Scholar
  3. Bursa, M, K. Radej, Z. Sima, S. True, V. Vatrt, (1997). Determination of the geopotential scale factor from Topex/Poseidon satellite altimetry. Studia geoph. et geod. 41:203–215.CrossRefGoogle Scholar
  4. Bursa, M, J. Kouba, K. Radej, S. True, V. Vatrt, M. Vojtiskova, (1998). Mean Earth’s equipotential surface from Topex/Poseidon altimetry. Studia geoph. et geod. 42:456–466.CrossRefGoogle Scholar
  5. Bursa, M., J. Kouba, M. Kumar, A. Müller, K. Radej, S. True, V. Vatrt, M. Vojtiskova, (1999). Geoidal geopotential and world height system. Studia geoph. et geod. 43: 327–337.CrossRefGoogle Scholar
  6. Bursa, M., S. Kenyon, J. Kouba, K. Radej, V. Vatrt, M. Vojtiskova, J. Simek, (2002). World height system specified by geopotential at tide gauge stations. IAG Symposia, 124:291–296. Springer.Google Scholar
  7. Bursa, M., S. Kenyon, J. Kouba, Z. Sima, V. Vatrt, M. Vojtiskova, (2004). A global vertical reference frame based on four regional vertical datums. Studia geoph. et geod. 48:493–502.CrossRefGoogle Scholar
  8. Chambers, D., S. A. Hayes, J. C. Ries, T. J. Urban, (2003). New Topex sea state bias models and their effect on global mean sea level. J. Geophys. Res. 108(C10), 3305,10.1029/2003JC001839.Google Scholar
  9. Drewes, H., L. Sanchez, D. Blitzkow, S. de Freitas, (2002): Scientific foundations of the SIRGAS vertical reference system. IAG Symposia 124:297–301. Springer.Google Scholar
  10. Förste, C, F. Flechtner, R. Schmidt, U. Meyer, R. Stubenvoll, F. Barthelmes, R. König, K.H. Neumayer, M. Rothacher, Ch. Reigber, R. Biancale, S. Bruinsma, J.-M. Lemoine, J.C. Raimondo, (2005) A New High Resolution Global Gravity Field Model Derived From Combination of GRACE and CHAMP Mission and Altimetry/Gravimetry Surface Gravity Data. Poster presented at EGU General Assembly 2005, Vienna, Austria, 24–29, April.Google Scholar
  11. Heck, B. (2004). Problems in the definition of vertical reference frames. IAG Symposia 127:164–174.Google Scholar
  12. Heiskanen W. And H. Moritz (1967). Physical Geodesy. W. H. Freeman and company. San Francisco.Google Scholar
  13. Hernandez, F, Ph. Schaeffer (2001a). MSS CLS01 http://www.cls.fr/html/oceano/projects/mss/cls_01_en.htmlGoogle Scholar
  14. Hernandez, F, Ph. Schaeffer (2001b). The CLS01 mean sea surface: a validation with the GFSC00.1 surface. Available at http://www.cls.ir/html/oceano/projects/mss/cls_01_en.htmlGoogle Scholar
  15. IAG SC3 Rep. (1995). IAG SC3 final report, Travaux de L’ Association Internationale de Géodésie, 30: 370–384Google Scholar
  16. Koblinsky et al. (1999). NASA Ocean Altimeter Pathfinder Project, Report 1: Data processing handbook, NASA/TM-1998-208605, April.Google Scholar
  17. Lemoine, F., S. Kenyon, J. Factor, R. Trimmer, N. Pavlis, D. Chinn C. Cox, S. Kloslo, S. Luthcke, M. Torrence, Y. Wang, R. Williamson, E. Pavlis, R. Rapp, T. Olson. (1998). The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96, NASA, Goddard Space Flight Center, Greenbelt.Google Scholar
  18. Lettelier, T., F. Lyard, F. Lefebre, (2004). The new global tidal solution: FES2004. Presented at: Ocean Surface Topography Science Team Meeting. St. Petersburg, Florida. Nov. 4–6.Google Scholar
  19. Luz, R. T., L. P. S. Fortes, M. Hoyer, H. Drewes, (2002): The vertical reference frame for the Americas-the SIRGAS 2000 GPS campaign. IAG Symposia 124: 301–305, Springer.Google Scholar
  20. Mather, R. S. (1978). The role of the geoid in four-dimensional geodesy. Marine Geodesy, 1:217–252.CrossRefGoogle Scholar
  21. Pavlis, N. (1991). Estimation of geopotential differences over intercontinental locations using satellite and terrestrial measurements. The Ohio State University, Department of Geodetic Science and Surveying. Report No. 409.Google Scholar
  22. Pavlis, N. (1996). Modification of program f477 (Rapp 1982)Google Scholar
  23. Rapp, R. (1982). A FORTRAN program for the computation of gravimetric quantities from high degree spherical harmonic expansions. Rep. No. 344. Dept of Geodetic Science and Surveying, The Ohio State University, Columbus Ohio.Google Scholar
  24. Rapp, P.; N. Balasubramania. (1992). A conceptual formulation of a world height system. The Ohio State University, Department of Geodetic Science and Surveying. Report No. 421.Google Scholar
  25. Rapp, R., (1994). Separation between reference surfaces of selected vertical datums. Bull. Géod. 69:26–31.CrossRefGoogle Scholar
  26. Rummel, R.; P. Teunissen. (1988). Height datum definition, height datum connection and the role of the geodetic boundary value problem. Bull. Géod. 62: 477–498.CrossRefGoogle Scholar
  27. Sánchez, L. (2003): Bestimmung der Höhenreferenzfldche fur Kolumbien. Diplomarbeit. TU Dresden.Google Scholar
  28. SIRGAS (1997): Final Report. Working Groups I and II-SIRGAS Relatório Final Grupos de Trabalho I e II. Institute Brasileiro de Geografia e Estatística, Rio de Janeiro.Google Scholar
  29. Smith (1998). Program geopot97, v. 0.4c. http://www.ngs.noaa.gov/GEOID/RESEARCH_SOFTWARE/research_software.html.Google Scholar
  30. Tapley M. Kim, S. Poole, M. Cheng, D. Chambers, J. Ries, (2001). The TEG-4 Gravity field model. AGU Fall 2001. Abstract G51A-0236Google Scholar
  31. Tapley J., Ries, S. Bettadpur, D. Chambers, M. Cheng, F. Condi, B. Gunter, Z. Kang, P. Nagel, R. Pastor, T. Pekker, S. Poole, F. Wang,. (2005). GGM02: An improved Earth gravity field model from GRACE. Journal of Geodesy, doi 10.1007/s00190-005-0480-z.Google Scholar
  32. Torge (2001). Geodesy. 3rd Edition. De Gruyter. Berlin, New York.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Laura Sanchez
    • 1
  1. 1.DGFIMunichGermany

Personalised recommendations