Advertisement

Dynamic Planet pp 354-361 | Cite as

Kinematic and highly reduced-dynamic LEO orbit determination for gravity field estimation

  • A. Jäggi
  • G. Beutler
  • H. Bock
  • U. Hugentobler
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 130)

Abstract

Kinematic positions of low Earth orbiting satellites equipped with spaceborne GPS receivers are widely used as input for subsequent gravity field estimation procedures. Positions relying on reduced-dynamic orbit determination, however, are often considered as inappropriate for this task, because they depend to some extent on the gravity field model underlying the orbit estimation. We review the principles of reduced-dynamic orbit determination and give the mathematical background for a very efficient estimation scheme of reduced-dynamic satellite trajectories using least-squares methods. Simulated as well as real data from the CHAMP GPS receiver are used to show the equivalence of kinematic and reduced-dynamic orbits in the kinematic limit and to present a highly reduced-dynamic orbit determination scheme as an alternative to kinematic point positioning.

Key words

Low Earth orbiter reduced-dynamic orbit determination kinematic orbit determination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beutler G (2004) Methods of celestial mechanics. Springer, Berlin Heidelberg New YorkGoogle Scholar
  2. Beutler G, Jäggi A, Hugentobler U, Mervart L (2006) Efficient orbit modelling using pseudo-stochastic parameters. J Geod 80: 353–372CrossRefGoogle Scholar
  3. European Space Agency ESA (1999) The Four Candidate Earth Explorer Core Missions: Gravity Field and Steady-State Ocean Circulation Mission. ESA SP-1233 (1)Google Scholar
  4. Földváry L, Švehla D, Gerlach C, Wermuth M, Gruber T, Rummel R, Rothacher M, Frommknecht B, Peters T, Steigenberger P (2004) Gravity model TUM-2Sp based on the energy balance approach and kinematic CHAMP orbits. In: Reigber C, Lühr H, Schwintzer P, Wickert J (Eds) Earth observation with CHAMP, results from three years in orbit. Springer Verlag, Berlin Heidelberg New York, pp 13–18Google Scholar
  5. Gerlach C, Földváry L, Švehla D, Gruber T, Wermuth M, Sneeuw N, Frommknecht B, Oberndorfer H, Peters T, Rothacher M, Rummel R, Steigenberger P (2003) A CHAMP-only gravity field model from kinematic orbits using the energy integral. Geophys Res Lett 30(20)Google Scholar
  6. Hugentobler U, Schaer S, Fridez P (2001) Bernese GPS Software Version 4.2. Documentation, Astronomical Institute University of BerneGoogle Scholar
  7. Jäggi A, Beutler G, Hugentobler U (2004a) Efficient stochastic orbit modeling techniques using least squares estimators. In: Sanso F (Ed) The proceedings of the international association of geodesy: a window on the future of geodesy. Springer, Berlin Heidelberg New York, pp 175–180Google Scholar
  8. Jäggi A, Hugentobler U, Beutler G (2006) Pseudo-stochastic orbit modelling techniques for low Earth orbiters. J Geod 80: 47–60CrossRefGoogle Scholar
  9. Lemoine FG, Smith DE, Kunz L, Smith R, Pavlis EC, Pavlis NK, Klosko SM, Chinn DS, Torrence MH, Williamson RG, Cox CM, Rachlin KE, Wang YM, Kenyon SC, Salman R, Trimmer R, Rapp RH, Nerem RS (1997) The development of the NASA GSFC and NIMA Joint Geopotential Model. In: Segawa J, Fujtmoto H, Okubo S (Eds) IAG Symposia: Gravity, Geoid and Marine Geodesy. Springer-Verlag, pp 461–469Google Scholar
  10. Reigber C, Balmino G, Schwintzer P, Biancale R, Bode A, Lemoine JM, Koenig R, Loyer S, Neumayer H, Marty JC, Barthelmes F, Perosanz F, Zhu SY (2002) A high quality global gravity field model from CHAMP GPS tracking data and accelerometry (EIGEN-1S). Geophys Res Lett 29(14)Google Scholar
  11. Reigber C, Schwintzer P, Neumayer KH, Barthelmes F, König R, Förste C, Balmino G, Biancale R, Lemoine JM, Loyer S, Bruinsma S, Perosanz F, Fayard T (2003) The CHAMP-only Earth Gravity Field Model EIGEN-2. Adv Space Res 31(8) 1883–1888CrossRefGoogle Scholar
  12. Švehla D, Rothacher M (2003) Kinematic and reduced-dynamic precise orbit determination of CHAMP satellite over one year using zero-differences, presented at EGS-AGU-EUG Joint Assembly, Nice, FranceGoogle Scholar
  13. Švehla D, Rothacher M (2004) Kinematic precise orbit determination for gravity field determination. In: Sanso F (Ed) The proceedings of the international association of geodesy: a window on the future of geodesy. Springer, Berlin Heidelberg New York, pp 181–188Google Scholar
  14. Touboul P, Willemenot E, Foulon B, Josselin V (1999) Accelerometers for CHAMP, GRACE and GOCE space missions: synergy and evolution. Boll Geof Teor Appl 40 321–327Google Scholar
  15. Visser PNAM, Sneeuw N, Gerlach C (2003) Energy integral method for gravity field determination from satellite orbit coordinates. J Geod 77: 207–216CrossRefGoogle Scholar
  16. Wu SC, Yunck TP, Thornton CL (1991) Reduced-dynamic technique for precise orbit determination of low Earth satellites. J Guid, Control Dyn 14(1): 24–30CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • A. Jäggi
    • 1
  • G. Beutler
    • 1
  • H. Bock
    • 1
  • U. Hugentobler
    • 1
  1. 1.Astronomical InstituteUniversity of BernBernSwitzerland

Personalised recommendations