Dynamic Planet pp 23-30

Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 130)

| Cite as

Sea Level in the British Isles: Combining Absolute Gravimetry and Continuous GPS to Infer Vertical Land Movements at Tide Gauges

  • F. N. Teferle
  • R. M. Bingley
  • A. I. Waugh
  • A. H. Dodson
  • S. D. P. Williams
  • T. F. Baker

Abstract

The current terrestrial reference frame, current global GPS products and current precise GPS processing techniques, limit the determination of accurate, long-term, vertical station velocities from continuous GPS measurements on a global scale. Several authors have reported biases in their vertical station velocities determined from continuous GPS when compared to alternative geodetic methods. It has been argued that until these problems have been resolved, the study of relative land and sea level rates on regional scales is the only way to investigate vertical land movements at tide gauges co-located with continuous GPS. In the UK, we have been operating a network of continuous GPS and absolute gravimetry stations for the purpose of determining vertical land movements at tide gauges for almost ten years. This network consists often continuous GPS stations and three absolute gravimetry stations, all of which are either co-located or close to tide gauges. In this paper, we compare vertical land movements obtained from both geodetic methods with estimates of vertical land movements from high quality, independent geological and geophysical evidence, and derive a GPS-specific bias for which the estimates of vertical land movements from all continuous GPS stations are corrected. Based on recently published mean sea level trends by the Permanent Service for Mean Sea Level, we estimate a change in sea level, de-coupled from vertical land movements, for the British Isles.

Keywords

absolute gravimetry continuous GPS tide gauge sea level British Isles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitamimi, Z., P. Siliard, and C. Boucher (2002), ITRF2000: A new release of the International Terrestrial Reference Frame for Earth science applications. J. Geophys. Res., 107(B10), 2214, 10.1029/2001JB000561.CrossRefGoogle Scholar
  2. Blewitt, G. (2003), Self-consistency in reference frames, geocenter definition, and suface loading of the solid Earth. J. Geophys. Res., 108(B2), 2103, 10.1029/2002JB002082.CrossRefGoogle Scholar
  3. Boucher, C, Z. Altamimi, P. Sillard, and M. Feissel-Vernier (2004), The ITRF2000, International Earth Rotation Service (IERS). Technical Note 31, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main.Google Scholar
  4. Caccamise II, D.J., M.A. Merrifield, M. Bevis, J. Foster, Y.L. Firing, M.S. Schenewerk, F.W. Taylor, and D.A. Thomas (2005), Sea level rise at Honolulu and Hilo, Hawaii: GPS estimates of differential land motion. Geophys. Res. Lett., 32, L03607, 10.1029/2004GL021380.CrossRefGoogle Scholar
  5. Church, J.A., N.J. White, R. Coleman, K. Lambeck, and J.X. Mitrovica (2004), Estimates of the Regional Distribution of Sea Level Rise over the 1950–2000 Period. J. Clim., 17, 2609–2625.CrossRefGoogle Scholar
  6. Church, J.A. and N.J. White (2006), A 20th century acceleration in global sea-level rise. Geophys. Res. Lett., 33, L01602, 10.1029/2005GL024826.CrossRefGoogle Scholar
  7. Dong, D., P. Fang, Y. Bock, M.K. Cheng, and S. Miyazaki (2002), Anatomy of apparent seasonal variations from GPS derived site position time series. J. Geophys. Res., 107(B4), 10.1029/2001JB000573.Google Scholar
  8. Dong, D., T. Yunck, and M. Heflin (2003), Origin of the International Terrestrial Reference Frame. J. Geophys. Res., 108(B4), 2200, 10.1029/2002JB002035.CrossRefGoogle Scholar
  9. Fritsche, M., R. Dietrich, A. Knöfel, A. Rülke, S. Vey, M. Rothacher, and P. Steigenberger (2005), Impact of higher-order ionospheric terms on GPS estimates. Geophys. Res. Lett., 32, L23311, 10.1029/2005GL024342.CrossRefGoogle Scholar
  10. Ge, M., G. Gendt, G. Dick, F.P. Zhang, and C. Reigber (2005), Impact of GPS satellite antenna offsets on scale changes in global network solutions. Geophys. Res. Lett., 32, L06310, 10.1029/2004GL022224.CrossRefGoogle Scholar
  11. Herring, T.A. (2001), Vertical reference frame for sea level monitoring. EOS Trans. AGU, 82(47), Fall Meet. Suppl., Abstract G31D-07.Google Scholar
  12. Holgate, S. and P.L. Woodworth (2004), Evidence for enhanced coastal sea level rise during the 1990s. Geophys. Res. Lett., 31, L07305, 10.1029/2004GL019626.CrossRefGoogle Scholar
  13. Lambeck, K.. and P.J. Johnston (1995), Land subsidence and sea-level change: Contributions from the melting of the last great ice sheets and the isostatic adjustment of the Earth. In: Land Subsidence, F.B.J. Barends, F.J.J. Brouwer, and F.H. Schröder (eds.), 3–18, Balkema, Rotterdam.Google Scholar
  14. Lambert, A., N. Courtier, and T.S. James (2006), Long-term monitoring by absolute gravimetry: Tides to postglacial rebound. J. Geodyn., 41, 307–317, 10.1016/j.jog.2005.08.032.CrossRefGoogle Scholar
  15. Langbein, J. and H.O. Johnson (1997), Correlated errors in geodetic time series: Implications for time-dependent deformation. J. Geophys. Res., 102(B1), 591–603, 10.1029/96JB02945.CrossRefGoogle Scholar
  16. MacMillan, D.S. (2004), Rate Difference Between VLBI and GPS Reference Frame Scales. Eos Trans. AGU, 85(47), Fall Meet. Suppl., Abstract G21B-05.Google Scholar
  17. Mao, A., C.G.A. Harrison, and T.H. Dixon (1999), Noise in GPS coordinate time series. J. Geophys. Res., 104(B2), 2797–2818.CrossRefGoogle Scholar
  18. Niebauer, T.M., G.S. Sasegawa, J.E. Faller, R. Hilt, and F. Klopping (1995), A new generation of absolute gravimeters. Metrologia, 32, 159–180.CrossRefGoogle Scholar
  19. Peltier, W.R. (2001), ICE4G (VM2) glacial isostatic adjustment corrections. In: Sea Level Rise History and Consequences. International Geophysics Series, 75, Academic Press, San Diego, 65–96.Google Scholar
  20. Penna, N.T. and M.P. Stewart (2003), Aliased tidal signatures in continuous GPS height time series. Geophys. Res. Lett., 30(23), B08401, 10.1029/2004JB003390.CrossRefGoogle Scholar
  21. Prawirodirdjo, L. and Y. Bock (2004), Instantaneous global plate motion model from 12 years of continuous GPS observations. J. Geophys. Res., 109(8), B08405, 10.1029/2003JB002944.CrossRefGoogle Scholar
  22. PSMSL (2005), Table of MSL secular trends derived from PSMSL RLR data [online]. Liverpool: Permanent Service for Mean Sea Level (PSMSL). Available at: <URL:http://www.pol.ac.uk/psmsl/datainfo/rlr.trends> [Accessed 16 August 2005].Google Scholar
  23. Sanli, D.U. and G. Blewitt (2001), Geocentric sea level trend using GPS and > 100-year tide gauge record on a postglacial rebound nodal line. J. Geophys. Res., 106(B1), 713–719, 10.1029/2000JB900348.CrossRefGoogle Scholar
  24. Schmid, R., M. Rothacher, D. Thaller, and P. Steigenberger (2005), Absolute phase center corrections of satellite and receiver antennas. GPS Sol., 9, 283–293, 10.1007/sl0291-005-0134-x.CrossRefGoogle Scholar
  25. Sella, G.F., T.H. Dixon, and A. Mao (2002), REVEL: A model for recent plate velocities from space geodesy. J. Geophys. Res., 107(B4), 10.1029/2000JB000033.Google Scholar
  26. Shennan, I. and B. Horton (2002), Holocene land-and sea-level changes in Great Britain, J. Quaternary Sci., 17(5–6), 511–526.CrossRefGoogle Scholar
  27. Stewart, M.P., G.H. Ffoulkes-Jones, W.Y. Ochieng, P.J. Shardlow, N.T. Penna, and R.M. Bingley (2002), GAS: GPS Analysis Software version 2.4 user manual. TESSG, University of Nottingham, Nottingham, U.K.Google Scholar
  28. Teferle, F.N., R.M. Bingley, A.H. Dodson, and T.F. Baker (2002a), Application of the dual-CGPS concept to monitoring vertical land movements at tide gauges. Phys. Chem. Earth, 27, 1401–1406.Google Scholar
  29. Teferle, F.N., R.M. Bingley, A.H. Dodson, N.T. Penna, and T.F. Baker (2002b), Using GPS to separate crustal movements and sea level changes at tide gauges in the UK. In: H. Drewes, A.H. Dodson, L.P.S. Fortes, L. Sanchez and P. Sandoval (eds), Vertical Reference Systems. International Association of Geodesy Symposia, 124, Springer-Verlag, Heidelberg Berlin, 264–269.Google Scholar
  30. Teferle, F.N. (2003), Strategies for long-term monitoring of tide gauges with GPS. PhD thesis, University of Nottingham, [Available at: <URL: http://etheses.nottingham.ac.uk>].Google Scholar
  31. Teferle, F.N., R.M. Bingley, A.H. Dodson, P. Apostolidis, and G. Staton (2003), RF Interference and Multipath Effects at Continuous GPS Installations for Long-term Monitoring of Tide Gauges in UK Harbours. In: Proc. 16th Tech. Meeting of the Sat. Div. of the Inst. of Navigation, ION GPS/GNSS 2003, Portland, Oregon, 9–12 September 2003, pp. 12.Google Scholar
  32. Teferle, F.N., R.M. Bingley, S.D.P. Williams, T.F. Baker, and A.H. Dodson (2006), Using continuous GPS and absolute gravity to separate vertical land movements and changes in sea level at tide gauges in the UK, Phil. Trans. R. Soc. A, 364, 1841, 10.1098/rsta.2006.1746.CrossRefGoogle Scholar
  33. Van Camp, M., S.D.P. Williams, and O. Francis (2005), Uncertainty of absolute gravity measurements. J. Geophys. Res., 110, B05406, 10.1029/2004JB003497.CrossRefGoogle Scholar
  34. White, N.J., J.A. Church, and J.M. Gregory (2005), Coastal and global averaged sea level rise for 1950 to 2000. Geophys. Res. Lett., 32, L01601, 10.1029/2004GL021391.CrossRefGoogle Scholar
  35. Williams, S.D.P. (2003), The effect of coloured noise on the uncertainties of rates estimated from geodetic time series. J. Geod., 76(9–10), 483–494.CrossRefGoogle Scholar
  36. Williams, S.D.P., T.F. Baker, and G. Jeffries (2001), Absolute gravity measurements at UK tide gauges. Geophys. Res. Lett., 28(12), 2317–2320, 10.1029/2000GL012438.CrossRefGoogle Scholar
  37. Williams, S.D.P., Y. Bock, P. Fang, P. Jamason, R.M. Nikolaidis, L. Prawirodirdjo, M. Miller, and D.J. Johnson (2004), Error analysis of continuous GPS position time series. J. Geophys. Res., 109(B3), B03412, 10.1029/2003JB002741.CrossRefGoogle Scholar
  38. Woodworth, P.L., M.N. Tsimplis, R.A. Flather, and I. Shennan (1999), A review of the trends observed in British Isles mean sea level data measured by tide gauges. Geophys. J. Int. 136, 651–670.CrossRefGoogle Scholar
  39. Zhang, J., Y. Bock, H.O. Johnson, P. Fang, S.D.P. Williams, J. Genrich, S. Wdowinski, and J. Behr (1997), Southern California Permanent GPS Geodetic Array: Error analysis of daily position estimates and site velocities. J. Geophys. Res., 102(B8), 18035–18055, 10.1029/97JB01380.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • F. N. Teferle
    • 1
  • R. M. Bingley
    • 1
  • A. I. Waugh
    • 1
  • A. H. Dodson
    • 1
  • S. D. P. Williams
    • 2
  • T. F. Baker
    • 2
  1. 1.Institute of Engineering Surveying and Space GeodesyUniversity of NottinghamNottinghamUK
  2. 2.Proudman Oceanographic LaboratoryLiverpoolUK

Personalised recommendations