Dynamic Planet pp 143-151 | Cite as

Looking for systematic error in scale from terrestrial reference frames derived from DORIS data

  • P. Willis
  • F. G. Lemoine
  • L. Soudarin
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 130)


The long-term stability of the scale of Terrestrial Reference Frames is directly linked with station height determination and is critical for several scientific studies, such as global mean sea level rise or ocean circulation with consequences to global warming studies. In recent International Terrestrial Reference Frame (ITRF) solutions, the DORIS technique was not considered able to provide any useful information on scale (derived from VLBI and SLR). We have analyzed three different DORIS time series of coordinates (GSFC, IGN/JPL, LEGOS/CLS) performed independently using different software packages. In the long-term, we show that the DORIS technique, due to its very stable and geographically distributed network, has extremely good stability (<0.1 ppb/yr). In the short-term, the three groups show systematic errors in scale (up to 5 ppb) that could come from their specific analysis strategies. Furthermore, we have investigated on a shorter time period (2004) new results for single-satellite solutions. This analysis is a first step in understanding the systematic errors currently seen in the DORIS-derived scale from different groups.


DORIS Terrestrial Reference Frame (TRF) orbit determination 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altamimi, Z., P. Sillard, C. Boucher (2002). ITRF2000, A new release of the International Terrestrial Reference Frame for earth science applications. Journal of Geophysical Research, Solid Earth, vol. 107(B10), 2214.CrossRefGoogle Scholar
  2. Altamimi Z., C. Boucher, P. Willis (2005). Terrestrial Reference Frame requirements within GGOS, Journal of Geodynamics, Vol. 40(4–5), pp. 363–374 CrossRefGoogle Scholar
  3. Biancale R., G. Balmino, J.M. Lemoine, et al. (2000). A new global Earth’s gravity field model from satellite orbit perturbations, GRIM5-S1, Geophysical Research Letters, Vol. 27(22), pp. 3611–3614.CrossRefGoogle Scholar
  4. Cazenave A., R.S. Nerem (2004). Present-day sea level change, Observations and causes, Reviews of Geophysics, Vol. 42(3), RG3001.CrossRefGoogle Scholar
  5. Chao B.F., and A. Au (1991), Temporal variation of the Earth’s low-degree field caused by atmospheric mass redistribution — 1980–1988, Journal of Geophysical Research, Solid Earth, Vol. 96(B4), pp. 6569–6575.Google Scholar
  6. Crétaux J.F., L. Soudarin, A. Cazenave, F. Bouille (1998), Present-day Tectonic Plate Motions and Crustal Deformations from the DORIS Space System. Journal of Geophysical Research, Solid Earth vol. 103(B12), pp. 30167–30181.CrossRefGoogle Scholar
  7. Crétaux J.F., L. Soudarin, F.J.M. Davidson, M.C. Gennero, M. Berge-Nguyen, A. Cazenave (2002), Seasonal and interannual geocenter motion from SLR and DORIS measurements, comparison with surface loading data, Journal of Geophysical Research, Solid Earth, Vol. 107(B12), 2374.CrossRefGoogle Scholar
  8. Feissel-Vernier M, J.J. Valette, K. Le Bail, L. Soudarin (2005). Impact of the GRACE gravity fields models on IDS products, International DORIS Service Report.Google Scholar
  9. Gerasimenko M.D., A.G. Kolomiete, M. Kasahara, J.F. Crétaux, L. Soudarin (2005). Establishment of the three-dimensional kinematic reference frame by VLBI and DORIS global data, Far Eastern Mathematical Journal.Google Scholar
  10. Lemoine F.G., et al. (1998). The development of the joint NASA/GSFC and the National Imagery and mapping Agency (NIMA) geopotential models, EGM96, in NASA, TP-1998-206861, pp. 1–575.Google Scholar
  11. Lemoine J.-M., H. Capdeville (submitted). Correction model for the SAA effect on Jason/DORIS data. Journal of Geodesy Google Scholar
  12. Luthcke S.B., N.P. Zelensky, D.D. Rowlands, F.G. Lemoine, T.A. Williams (2003). The 1-centimeter orbit, Jason-1 precision orbit determination using GPS, SLR, DORIS, and altimeter data, Marine Geodesy, Vol. 26(3–4), pp. 399–421.CrossRefGoogle Scholar
  13. Meisel B, D. Angermann, M. Krugel, H. Drewes, M. Gerstl, R. Kelm, H. Muller, W. Seemuller, V. Tesmer (2005). Refined approaches for terrestrial reference frame computations, Advances in Space Research, Vol. 36(3), pp. 350–357.CrossRefGoogle Scholar
  14. Morel L., and P. Willis (2005). Terrestrial reference frame effects on mean sea level rise determined by TOPEX/Poseidon, Advances in Space Research, Vol. 36(3), pp. 358–368.CrossRefGoogle Scholar
  15. Rummel R., H. Drewes, G. Beutler (2002). Integrated Global Observing System IGGOS, A candidate IAG Project, In Proc. International Association of Geodesy, Vol. 125, pp. 135–143.Google Scholar
  16. Sillard P., and C. Boucher (2001). A review of algebraic constraints in Terrestrial Reference Frame datum definition, Journal of Geodesy, Vol. 75(2–3), pp. 63–73.CrossRefGoogle Scholar
  17. Soudarin L., J.F. Crétaux, A. Cazenave (1999). Vertical Crustal Motions from the DORIS space-geodesy system, Geophysical Research Letters, Vol. 26(9), pp. 1207–1210.CrossRefGoogle Scholar
  18. Tapley B.D., S. Bettadpur, M. Watkins, C. Reigber (2004), the Gravity Recovery and Climate Experiment, Mission overview and early results, Geophysical Research Letters, Vol. 31(9), L09607.CrossRefGoogle Scholar
  19. Tavernier G., H. Fagard, M. Feissel-Vernier, F. Lemoine, C. Noll, J.C. Ries, L. Soudarin, P. Willis (2005). The International DORIS Service, IDS. Advances in Space Research, Vol. 36(3), pp. 333–341.CrossRefGoogle Scholar
  20. Tregoning P., T. van Dam (2005). Effects of atmospheric pressure loading and seven-parameter transformations on estimates of geocenter motion and station heights from space geodetic observations, Journal of Geophysical Research, Solid Earth, Vol. 110(B3),B03408.CrossRefGoogle Scholar
  21. Webb F., and J. Zumberge (Eds.) (1995). An introduction to Gipsy/Oasis II, Report Jet Propulsion Laboratory, Pasadena, USA, JPLM D-11088.Google Scholar
  22. Willis P., and M. Heflin (2004), External validation of the GRACE GGM01C Gravity Field using GPS and DORIS positioning results, Geophysical Research Letters, Vol. 31(13), L13616.CrossRefGoogle Scholar
  23. Willis P., and J.C. Ries (2005), Defining a DORIS core network for Jason-1 precise orbit determination based on ITRF2000, methods and realization. Journal of Geodesy, Vol. 79(6–7), pp. 370–378.CrossRefGoogle Scholar
  24. Willis P., B. Haines, J.-P. Berthias, P. Sengenes, J.L. Le Mouel (2004), Behavior of the DORIS/Jason oscillator over the South Atlantic Anomaly. Comptes Rendus Geoscience, Vol. 336(9), pp. 839–846.CrossRefGoogle Scholar
  25. Willis P., C. Boucher, H. Fagard, Z. Altamimi (2005a). Geodetic applications of the DORIS system at the French Institut Geographique National. Comptes Rendus Geoscience, Vol. 337(7), pp. 653–662.CrossRefGoogle Scholar
  26. Willis P., Y.E. Bar-Sever, G. Tavernier (2005b), DORIS as a potential part of a Global Geodetic Observing System. Journal of Geodynamics, Vol. 40(4–5), pp. 494–501.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • P. Willis
    • 1
    • 2
  • F. G. Lemoine
    • 3
  • L. Soudarin
    • 4
  1. 1.Direction TechniqueInstitut Géographique NationalSaint-MandeFrance
  2. 2.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  3. 3.Goddard Space Flight CenterGreenbeltUSA
  4. 4.Collecte Localisation SatelliteRamonville Saint-AgneFrance

Personalised recommendations