Dynamic Planet pp 137-142 | Cite as

A comparative analysis of uncertainty modelling in GPS data analysis

  • S. Schön
  • H. Kutterer
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 130)

Abstract

A thorough assessment and mathematical treatment of all relevant errors in GPS data processing and analysis are essential for the further use and interpretation of the processing results. In this study two mathematical approaches for the error handling are studied in a comparative way. A probabilistic approach is based on the construction of a fully populated variance-covariance matrix of zero difference phase observations by introducing the uncertainty measures of the respective influence parameters in terms of standard deviations. A deterministic approach interprets these uncertainty measures as error bands and uses formalisms from interval mathematics. Both approaches are applied to a simulated EUREF sub-network. The deterministic approach yields more realistic results, in particular with respect to the dependence of the uncertainty measures on the baseline length.

Keywords

GPS systematic errors correlations imprecision interval mathematics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alefeld G. and Herzberger J. (1983): Introduction to Interval Computations. Academic Press, New York.Google Scholar
  2. Brunner F.K., Hartinger H., and Troyer L. (1999): GPS signal diffraction modelling: the stochastic SIGMA-D model, Journal of Geodesy, 73:259–267.CrossRefGoogle Scholar
  3. Han S. and Rizos C. (1995) Standardization of the variance-covariance matrix for GPS rapid static positioning. Geomatics Research Australasia 62: 37–54Google Scholar
  4. Hartinger H. and Brunner F.K. (1999): Variances of GPS Phase Observations: The SIGMA-e Model. GPS Sol. 2/4:35–43.CrossRefGoogle Scholar
  5. Hofmann-Wellenhof B., Lichtenegger H., and Collins J. (2001): GPS Theory and Practice, 5 ed, Springer Wien New York.Google Scholar
  6. Howind J. (2005): Analyse des stochastischen Modells von Trägerphasenbeobachtungen. Dissertation. DGK C 584. München.Google Scholar
  7. Jäger R. and Leinen S. (1992): Spectral Analysis of GPS-Networks and Processing Strategies due to Random and Systematic Errors. In: Defence Mapping Agency and Ohio State University (Eds.) Proceedings of the Sixth International Symposium on Satellite Positioning, Columbus/Ohio (USA), 16–20 March. Vol. (2), p. 530–539.Google Scholar
  8. Koch K.-R. (1999): Parameter Estimation and Hypothesis Testing in Linear Models (2d Ed.). Springer, Berlin.Google Scholar
  9. Schön S. (2003): Analyse und Optimierung geodätischer Messanordnungen unter besonderer Berücksichtigung des Intervallansatzes. Dissertation. DGK C 567. München.Google Scholar
  10. Schön S. and Kutterer H. (2003): Imprecision in Geodetic Observations — Case Study GPS Monitoring Network. In: Stiros S. and Pytharouli S. (Eds.): Proceedings of the 11th: FIG Inter national Symposium on Deformation Measurements. Geodesy and Geodetic Applications Lab., Patras University. Publication No.2: 471–478.Google Scholar
  11. Schön S. and Kutterer H. (2005):. Realistic uncertainty measures for GPS observations. In: Sanso F. (Ed.): A Window on the Future, Proceedings of the 36th IAG General Assembly, 23rd IUGG General Assembly, Sapporo, Japan, 2003, IAG Symposia series, No. 128, 54–59.Google Scholar
  12. Schwieger V. (1996): An Approach to Determine Correlations between GPS monitored epochs. Proceedings of the 8th International Symposium on Deformation Measurements, Hong Kong, 17–26Google Scholar
  13. Tiberius C. and Kenselaar F. (2003): Variance Component Estimation and Precise GPS Positioning: Case Study. Journal of Surveying Engineering 129(1): 11–18.CrossRefGoogle Scholar
  14. Wang J., Satirapod C., and Rizos C. (2002): Stochastic assessment of GPS carrier phase measurements for precise static relative positioning, Journal of Geodesy 76:95–104.CrossRefGoogle Scholar
  15. Wieser A. (2002): Robust and fuzzy techniques for parameter estimation and quality assessment in GPS. Dissertation. Shaker-Verlag, Aachen.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • S. Schön
    • 1
  • H. Kutterer
    • 2
  1. 1.Engineering Geodesy and Measurement SystemsGraz University of Technology (TUG)GrazAustria
  2. 2.Geodetic InstituteUniversity of HannoverHannoverGermany

Personalised recommendations