Status of DORIS Stations in Antarctica for Precise Geodesy

  • M. Amalvict
  • P. Willis
  • K. Shibuya
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 130)


Polar regions and especially Antarctica are nowadays recognised as exerting a major control upon the global Mean Sea Level (MSL) directly linked to climate changes. Monitoring and understanding the geodynamical behaviour of these regions is then of critical importance. The long-term displacement (or velocity) of reference sites helps constraining the ice sheet evolution prediction models. Several geodetic space techniques, such as GPS, observe displacements of such reference sites. In Antarctica, in addition to numerous GPS stations, four DORIS stations are permanently operating: Belgrano, Rothera, Syowa, Terre Adélie. In addition to the permanent DORIS stations, episodic DORIS campaigns took also place at Dome C / Concordia and on Sorsdal and Lambert glaciers. In this paper, we first present general information concerning the stations and the campaigns (exact location, period of measurements, etc). We then discuss the solutions obtained by different analysis centres (when available) for all DORIS stations in the Antarctic region. In particular, we use several ITRFs (from the early ITRF96 to ITRF2000) to see their impact on the derived velocities in Antarctica. An emphasis is given to the investigation and possible explanation of differences observed between each solution. Finally, we compare at these stations, the results of DORIS observations to the solutions from other geodetic techniques (GPS, VLBI) and to the results of repeated absolute gravity measurements (when available).


Absolute Gravity Antarctica DORIS GPS Syowa Terre Adélie VLBI 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altamimi Z., P. Sillard, C. Boucher (2002). ITRF2000, A new release of the International Terrestrial Reference Frame for earth science applications, J Geophys Res, Solid Earth, Vol. 107(B10), pp. 2214.CrossRefGoogle Scholar
  2. Altamimi Z., C. Boucher, P. Willis (2005). Terrestrial Reference Frame requirements within GGOS, Journal of Geodynamics. Vol. 40(4–5), pp. 363–374CrossRefGoogle Scholar
  3. Amalvict M., Mäkinen J., Shibuya K. and Fukuda Y., 2005, Absolute Gravimetry in Antarctica: Status and Prospects, Journal of Geodynamics, submittedGoogle Scholar
  4. Beutler G., M. Rothcaher, S. Schaer, T.A. Springer, J. Kouba, R.E. Neilan (1999), The International GPS Service (IGS), an interdisciplinary service in support of Earth sciences, Advances in Space Research, Vol. 23(4), pp. 631–653.CrossRefGoogle Scholar
  5. Bouin MN, Vigny C (2000), New constraints on Antarctic plate motion and deformation from GPS data, Journal of Geophysical Research, Solid Earth, Vol. 105(B12), pp. 28279–28293.CrossRefGoogle Scholar
  6. Boucher C., Z. Altamimi, and P. Sillard (1998), The 1997 International Terrestrial Reference Frame (ITRF97), IERS Techn. Note 27, Paris Observatory.Google Scholar
  7. Bouin M.N., 2005, personal communicationGoogle Scholar
  8. Cazenave A., Nerem R.S. (2004). Present-day sea level change, Observations and causes, Reviews of Geophysics, Vol. 42(3), RG3001CrossRefGoogle Scholar
  9. Crétaux JF, Soudarin L, Cazenave A, Bouille F (1998) Present-day Tectonic Plate Motions and Crustal Deformations from the DORIS Space System, J Geophys Res, Solid Earth, Vol. 103(B12), pp. 30167–30181CrossRefGoogle Scholar
  10. Dietrich R, Dach R, Engelhardt G, Ihde J, Korth W, Kutterer H-J, Lindner K, Mayer M, Menge F, Miller C, Niemeier W, Perlt J, Pohl M, Salbach H, Schenke H-W, Schöne T, Seeber G, Veit A, Völksen C, 2001, ITRF coordinates and plate velocities from repeated GPS campaign in Antarctica—an analysis based on different individual solutions. Journal of Geodesy, Vol. 74(11–12), pp. 756–766CrossRefGoogle Scholar
  11. Dietrich R, Rülke A, Ihde J, Lindner K, Miller H, Niemeier W, Schenke H-W, Seeber G, 2004, Plate kinematics and deformation status of the Antarctic Peninsula based on GPS, Global Planet Change, 42, 313–321CrossRefGoogle Scholar
  12. Donnelan A; and Luyendyk B.P., 2004, GPS evidence for a coherent Antarctic plate and for postglacial rebound in Marie Byrd Land, Global and Palnetary Change, 42, 305–311CrossRefGoogle Scholar
  13. Feissel-Vernier M., Valette J.J., Soudarin L., Le Bail K. (2005). Report of the 2003 Analysis campaign “Impact of GRACE gravity field models on IDS products”, IDS Report.Google Scholar
  14. Fukuda Y, Higashi T, Takemoto S, Iwano S, Doi K, Shibuya K, Hiraoka Y, Kimura I, McQueen H, Govind R., 2004, Absolute gravity measurements in Australia and Syowa Station, Antarctica. Gravity, Geoid and Space Missions GGSM 2004. IAG International Symposium. Porto, Portugal. August 30–September 3, 2004Series: IAG Symposia, Vol. 129 Jekeli, Christopher; Bastos, Luisa; Fernandes, Joana (Eds.) #1, #2, #3Google Scholar
  15. Fukuzaki Y., Shibuya K., Doi K., Ozawa T., Nothnagel A., Jike T., Iwano S., Jauncey D. L., Nicolson G. D., McCulloch P. M. (2005). Results of the VLBI experiments conducted with Syowa Station, Antarctica, Journal of Geodesy, Vol. 79(6–7), pp. 379–388.CrossRefGoogle Scholar
  16. Govind et Valette, 2004, The Sordsal and Lambert campaigns: organisational aspects and first results, IDS 2004 Plenary Meeting,,,, Scholar
  17. James T.S., E.R. Ivins (1998). Predictions of crustal motions driven by present-day ice sheet evolution and by isostatic memory of the Last Glacial Maximum, Journal of Geophysical Research, Solid Earth, Vol. 103(B3), pp. 4993–5017.CrossRefGoogle Scholar
  18. Kreemer C., W.E. Holt, A.J. Haines (2003). An integrated global model of present-day plate motions and plate boundary deformation, Geophysical Journal International, Vol. 154(1), pp. 8–34.CrossRefGoogle Scholar
  19. Larson K, Freymueller J (1995), Relative motions of the Australia, Pacific and Antarctic plates by the Global Positioning System. Geophysical Research Letters, Vol. 22(1), pp. 37–40.CrossRefGoogle Scholar
  20. Makinen J, Amalvict M, Shibuya K, Fukuda Y (2006) Absolute Gravimetry in Antarctica: Status and Prospects, Journal of Geodynamics, in pressGoogle Scholar
  21. Nakada M, Kimura R, Okuno J, Moriwaki K, Miura H, Maemoku H, 2000, Late Pleistocene and Holocene melting history of the Antarctic ice sheet derived from sea-level variations, Marine Geolo, Vol. 167, pp. 85–103.CrossRefGoogle Scholar
  22. Peltier W.R. (1996). Mantle viscosity and ice-age ice sheet topography, Science, Vol. 273(5280), pp. 1359–1364.CrossRefGoogle Scholar
  23. Sillard P., Z. Altamimi, and C. Boucher (1998). The ITRF96 realization and its associated velocity field, Geophysical Research Letters, Vol. 25(17), pp. 3223–3226.CrossRefGoogle Scholar
  24. Sillard P., and C. Boucher (2001). A review of algebraic constraints in Terrestrial Reference Frame datum definition, Journal of Geodesy, Vol. 75(2–3), pp. 63–73.CrossRefGoogle Scholar
  25. Soudarin L., J.F. Crétaux, A. Cazenave (1999). Vertical Crustal Motions from the DORIS space-geodesy system, Geophysical Research Letters, Vol. 26(9), pp. 1207–1210.CrossRefGoogle Scholar
  26. Tavernier G., H. Fagard, M. Feissel-Vernier, F. Lemoine, C. Noll, J.C. Ries, L. Soudarin, P. Willis (2005). The International DORIS Service, IDS, Advances in Space Research, Vol. 36(3), pp. 333–341.CrossRefGoogle Scholar
  27. Tregoning, P., A. Welsh, H. McQueen and K. Lambeck, 2000, The search for postglacial rebound near the Lambert Glacier, Antarctica Earth, Planets and Space, Vol. 52(11), pp. 1037–1041Google Scholar
  28. Turner J., Colwell S.R., Marshall G.J., Lachlan-Cope T.A., Carleton A.M., Jones P.D., Lagun V., Reid P.A., Iagovkina S. (2005). Antarctic climate change during the last 50 years, International Journal of Climatology, Vol. 25(3), pp. 279–294CrossRefGoogle Scholar
  29. Vincent C., J.J. Valette, L. Soudarin, J.F. Cretaux, B. Legresy, F. Remy, A. Capra (2000). DORIS campaigns at Dome Concordia, Antarctica in 1993 and 1999–2000, in Proc. DORIS Day 2000, CNES, France.Google Scholar
  30. Wahr J, Han D, Trupin A, (1995) Predictions of vertical uplift caused by changing polar ice volumes on a viscoelastic Earth. Geophysical Research Letters, Vol. 22(8), pp. 977–980.CrossRefGoogle Scholar
  31. Weller G. (1998). Regional impacts of climate change in the Arctic and Antarctic, Annals of Glaciology, Vol. 27, pp. 543–552Google Scholar
  32. Willis P., M. Heflin (2004). External validation of the GRACE gravity GGM01C gravity field using GPS and DORIS positioning results. Geophysical Research Letters, Vol. 31(13), L13616CrossRefGoogle Scholar
  33. Willis P., J.C. Ries (2005), Defining a DORIS core network for Jason-1 precise orbit determination based on ITRF2000, Methods and realization, Journal of Geodesy, Vol. 79(6–7), pp. 370–378.CrossRefGoogle Scholar
  34. Willis P., B. Haines, J.P. Berthias, P. Sengenes, J.L. Le Mouel (2004). Behavior of the DORIS/Jason oscillator over the South Atlantic Anomaly, Comptes Rendus Geoscience, Vol. 336(9), pp. 839–846.CrossRefGoogle Scholar
  35. Willis P., C. Boucher, H. Fagard, Z. Altamimi (2005), Geodetic applications of the DORIS system at the French Institut Géographique National, Comptes Rendus Geoscience, Vol. 337(7), pp. 653–662.CrossRefGoogle Scholar
  36. Zumberge J.F., M.B. Heflin, D.C. Jefferson, M.M. Watkins, F.H. Webb (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks, Journal of Geophysical Research, Solid Earth, Vol. 102(B3), pp. 5005–5017.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • M. Amalvict
    • 1
    • 2
  • P. Willis
    • 3
    • 4
  • K. Shibuya
    • 2
  1. 1.Institut de Physique du Globe de StrasbourgÉcole et Observatoire des Sciences de la TerreStrasbourgFrance
  2. 2.National Institute of Polar ResearchTokyoJapan
  3. 3.Direction TechniqueInstitut Géographique NationalSaint-MandéFrance
  4. 4.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations