Advertisement

Scale-based comparison of Sea Level observations in the North Atlantic from Satellite Altimetry and Tide Gauges

  • S. M. Barbosa
  • M. J. Fernandes
  • M. E. Silva
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 130)

Abstract

A comparative study is carried out for sea level observations in the North Atlantic from tide gauges and satellite altimetry. Monthly tide gauge records from 12 stations in both sides of the North Atlantic from January 1993 to December 2003 and monthly time series of sea level anomalies derived from TOPEX measurements are considered. The degree of association between tide gauge and altimetry observations is analysed for different scales by computing the correlation between the sea level components resulting from a multiresolution analysis based on the maximal overlap discrete wavelet transform. A similar correlation analysis is carried out to assess the relationship between the sea level observations and climate variables: sea surface temperature, precipitation rate and wind speed. The results show that altimetry and tide gauge observations are strongly correlated, as expected, but also that the relation is scale dependent, with covariability driven by the seasonal signal for most stations. For all variables the obtained correlation patterns exhibit significant spatial variability reflecting the diversity of local conditions affecting coastal sea level.

Keywords

Sea level satellite altimetry tide gauges discrete wavelet transform 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AVISO (1996). User handbook, AVI-NT-02-101-CN, Ed. 3.0.Google Scholar
  2. Berwin, R. (2003). Topex/Poseidon Sea Surface Height Anomaly Product. User’s Reference Manual, NASA JPL Physical Oceanography DAAC, Pasadena, CA.Google Scholar
  3. Chambers, D. P., C. F. Mehlhaff, T. J. Urban, D. Fujii. and R. S. Nerem (2002). Low frequency variations in global mean sea level: 1950–2000. J Geophys Res, 107, doi: 10.1029/2001JCOO1089.Google Scholar
  4. Chambers, D. P., S. A. Hayes, J. C. Rics and T. J. Urban (2003). New Topex sea state bias models and their effect on global mean sea level. J Geophys Res, 108, pp. 3305–3311.CrossRefGoogle Scholar
  5. Cheney, B., L. Miller, R. Agreen, N. Doyle and J. Lillibridge (1994). TOPEX/POSEIDON: The 2-cm Solution. J Geophys Res, 99, pp. 24555–24564.CrossRefGoogle Scholar
  6. Church, J., N. White, R. Coleman, K. Lambek and J. Mitrovica, (2004). Estimates of the regional distribution of sea level rise over the 1950–2000 period. J Climate, 17, pp. 2609–2625.CrossRefGoogle Scholar
  7. Daubechies, I. (1988). Orthonormal bases of compactly supported wavelets. Commun Pur Appl Math, 41, pp. 909–996.CrossRefGoogle Scholar
  8. Dong, X., P. Moore and R. Bingley (2002). Absolute calibration of the T/P altimeters using UK tide gauges, GPS and precise local geoid-differences. Mar Geod, 25, pp. 189–204.CrossRefGoogle Scholar
  9. Fernandes, M. J. and M. A. Antunes (2003). Eight years of satellite radar altimetry in the Northeast Atlantic. In: Proc. 3 Assembleia Luso-Espanhola de Geodesia e Geofisica, Editorial UPV. pp. 226–230.Google Scholar
  10. Mallat. S. G. 1989. A theory for multiresolution signal decomposition: the wavelet representation. IEEE T Pattern Anal, 11, pp. 674–693.CrossRefGoogle Scholar
  11. Matsumoto, K., T. Takanezawa and O. Masatsugu (2000). Ocean tide models developed by assimilating Topex/Poseidon altimeter data into hydrodynamical model: a global model and a regional model around Japan. J Oceanogr, 56, pp. 567–581.CrossRefGoogle Scholar
  12. Mitchum G. T. (1994). Comparison of TOPEX sea surface heights and tide gauge sea levels. J Geophys Res, 99, pp. 24 541–24 553.CrossRefGoogle Scholar
  13. Mitchum, G. T. (1998). Monitoring the stability of satellite altimeters with tide gauges, J Atmos Ocean Tech, 15, pp. 721–730.CrossRefGoogle Scholar
  14. Mitchum, G. T. (2000). An improved calibration of satellite altimetric heights using tide gauge sea levels with adjustment for land motion, Mar Geod, 23, pp. 145–166CrossRefGoogle Scholar
  15. Percival, D. and Walden, A. 2000. Wavelet methods for time series analysis, Cambridge University Press.Google Scholar
  16. Reynolds, R. W., N. A. Rayner, T. M. Smith, D. C. Stokes and W. Wang. (2002). An Improved In Situ and Satellite SST Analysis for Climate. J Climate, 15, pp. 1609–1625CrossRefGoogle Scholar
  17. Scharroo, R., J. L. Lillibridge, W. H. F. Smith and E. J. O. Schrama (2004). Cross-calibration and long term monitoring of the microwave radiometers of ERS, TOPEX, GFO, Jason and Envisat, Mar Geod, 27, pp. 279–297.CrossRefGoogle Scholar
  18. Smith, W. II. F. and P. Wessel (1990). Gridding with continuous curvature splines in tension. Geophysics, 55, pp. 293–305.CrossRefGoogle Scholar
  19. Wang, Y. M. (2001). Mean Sea Surface, gravity anomaly, and vertical gravity gradient from satellite altimeter data. J Geophys Res, 106, pp. 31167–31174.CrossRefGoogle Scholar
  20. White, N. L, J. A. Church and J. M. Gregory (2005). Coastal and global averaged sea level rise for 1950 to 2000. Geophys Res Lett. 32, doi: 10.1029/2004GL021391.Google Scholar
  21. Woodworth, P. L. and R. Player (2003). The permanent service for mean sea level: an update to the 21st century. J Coastal Res. 19, pp. 287–295.Google Scholar
  22. Woodworth, P., P. Moore, X. K. Dong and R. Bingley (2004). Absolute Calibration of the Jason-1 Altimeter using UK Tide Gauges. Mar Geod, 27, pp. 95–106.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • S. M. Barbosa
    • 1
  • M. J. Fernandes
    • 1
  • M. E. Silva
    • 1
  1. 1.Departamento de Matematica Aplicada, Faculdade de CiênciasUniversidade do PortoPortoPortugal

Personalised recommendations