Advertisement

Physiological Processes of Speech Production

  • Kiyoshi Honda
Part of the Springer Handbooks book series (SHB)

Abstract

Speech sound is a wave of air that originates from complex actions of the human body, supported by three functional units: generation of air pressure, regulation of vibration, and control of resonators. The lung air pressure for speech results from functions of the respiratory system during a prolonged phase of expiration after a short inhalation. Vibrations of air for voiced sounds are introduced by the vocal folds in the larynx; they are controlled by a set of laryngeal muscles and airflow from the lungs. The oscillation of the vocal folds converts the expiratory air into intermittent airflow pulses that result in a buzzing sound. The narrow constrictions of the airway along the tract above the larynx also generate transient source sounds; their pressure gives rise to an airstream with turbulence or burst sounds. The resonators are formed in the upper respiratory tract by the pharyngeal, oral, and nasal cavities. These cavities act as resonance chambers to transform the laryngeal buzz or turbulence sounds into the sounds with special linguistic functions. The main articulators are the tongue, lower jaw, lips, and velum. They generate patterned movements to alter the resonance characteristics of the supra-laryngeal airway. In this chapter, contemporary views on phonatory and articulatory mechanisms are summarized to illustrate the physiological processes of speech production, with brief notes on their observation techniques.

Keywords

Vocal Fold Vocal Tract Hyoid Bone Arytenoid Cartilage Tongue Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

CVC

consonant-vowel-consonant

EGG

electroglottography

EMG

electromyographic

FRC

functional residual capacity

MRI

magnetic resonance imaging

OQ

open quotient

PGG

photoglottography

RF

radio frequency

SQ

speed quotient

TMJ

temporomandibular joint

VCV

vowel-consonant-vowel

VOT

voice onset time

References

  1. 2.1.
    M.H. Draper, P. Ladefoged, D. Whittenridge: Respiratory muscles in speech, J. Speech Hearing Res. 2, 16-27 (1959)CrossRefGoogle Scholar
  2. 2.2.
    T.J. Hixon, M. Goldman, J. Mead: Kinematics of the chest wall during speech production: volume displacements of the rib cage, abdomen, and lung, J. Speech Hearing Res. 16, 78-115 (1973)CrossRefGoogle Scholar
  3. 2.3.
    G. Weismer: Speech production. In: Handbook of Speech-Language Pathology and Audiology, ed. by N.J. Lass, L.V. McReynolds, D.E. Yoder (Decker, Toronto 1988) pp. 215-252Google Scholar
  4. 2.4.
    J. Kahane: A morphological study of the human prepubertal and pubertal larynx, Am. J. Anat. 151, 11-20 (1979)CrossRefGoogle Scholar
  5. 2.5.
    M. Hirano, Y. Kakita: Cover-body theory of vocal cord vibration. In: Speech Science, ed. by R. Daniloff (College Hill, San Diego 1985) pp. 1-46Google Scholar
  6. 2.6.
    E.B. Holmberg: Glottal airflow and transglottal air pressure measurements for male and female speakers in soft, normal, and loud voice, J. Acoust. Soc. Am. 84, 511-529 (1988)CrossRefGoogle Scholar
  7. 2.7.
    M.R. Rothenberg: Acoustic interaction between the glottal source and the vocal tract. In: Vocal Fold Physiology, ed. by K.N. Stevens, M. Hirano (Univ. Tokyo Press, Tokyo 1981) pp. 305-328Google Scholar
  8. 2.8.
    G. Fant, J. Liljencrants, Q. Lin: A four-parameter model of glottal flow, Speech Transmission Laboratory - Quarterly Progress and Status Report (STL-QPSR) 4, 1-13 (1985)Google Scholar
  9. 2.9.
    B.R. Fink, R.J. Demarest: Laryngeal Biomechanics (Harvard Univ. Press, Cambridge 1978)Google Scholar
  10. 2.10.
    J.E. Atkinson: Correlation analysis of the physiological features controlling fundamental frequency, J. Acoust. Soc. Am. 63, 211-222 (1978)CrossRefGoogle Scholar
  11. 2.11.
    K. Honda, H. Hirai, S. Masaki, Y. Shimada: Role of vertical larynx movement and cervical lordosis in F0 control, Language Speech 42, 401-411 (1999)CrossRefGoogle Scholar
  12. 2.12.
    H. Takemoto: Morphological analysis of the human tongue musculature for three-dimensional modeling, J. Speech Lang. Hearing Res. 44, 95-107 (2001)CrossRefGoogle Scholar
  13. 2.13.
    S. Takano, K. Honda: An MRI analysis of the extrinsic tongue muscles during vowel production, Speech Commun. 49, 49-58 (2007)CrossRefGoogle Scholar
  14. 2.14.
    S. Maeda: Compensatory articulation during speech: evidence from the analysis and synthesis of vocal-tract shapes using an articulatory model. In: Speech Production and Speech Modeling, ed. by W.J. Hardcastle, A. Marchal (Kluwer Academic, Dartrecht 1990) pp. 131-149CrossRefGoogle Scholar
  15. 2.15.
    K. Honda, T. Kurita, Y. Kakita, S. Maeda: Physiology of the lips and modeling of lip gestures, J. Phonetics 23, 243-254 (1995)CrossRefGoogle Scholar
  16. 2.16.
    K. Ishizaka, M. Matsudaira, T. Kaneko: Input acoustic-impedance measurement of the subglottal system, J. Acoust. Soc. Am. 60, 190-197 (1976)CrossRefGoogle Scholar
  17. 2.17.
    U.G. Goldstein: An articulatory model for the vocal tracts of growing children. Ph.D. Thesis (Massachusetts Institute of Technology, Cambridge 1980)Google Scholar
  18. 2.18.
    W.T. Fitch, J. Giedd: Morphology and development of the human vocal tract: A study using magnetic resonance imaging, J. Acoust. Soc. Am. 106, 1511-1522 (1999)CrossRefGoogle Scholar
  19. 2.19.
    J. Dang, K. Honda, H. Suzuki: Morphological and acoustic analysis of the nasal and paranasal cavities, J. Acoust. Soc. Am. 96, 2088-2100 (1994)CrossRefGoogle Scholar
  20. 2.20.
    O. Fujimura, J. Lindqvist: Sweep-tone measurements of the vocal tract characteristics, J. Acoust. Soc. Am. 49, 541-557 (1971)CrossRefGoogle Scholar
  21. 2.21.
    S. Maeda: The role of the sinus cavities in the production of nasal vowels, Proc. IEEE Int. Conf. Acoustics, Speech, Signal Proc. (ICASSPʼ82), Vol. 2 (1982) pp. 911-914, ParisGoogle Scholar
  22. 2.22.
    T. Chiba, M. Kajiyama: The Vowel - Its Nature and Structure (Tokyo-Kaiseikan, Tokyo 1942)Google Scholar
  23. 2.23.
    G. Fant: Acoustic Theory of Speech Production (Mouton, The Hague 1960)Google Scholar
  24. 2.24.
    T. Baer, P. Alfonso, K. Honda: Electromyography of the tongue muscle during vowels in /*pVp/ environment, Ann. Bull. RILP 22, 7-20 (1988)Google Scholar
  25. 2.25.
    K. Honda: Organization of tongue articulation for vowels, J. Phonetics 24, 39-52 (1996)CrossRefGoogle Scholar
  26. 2.26.
    I. Lehiste, G.E. Peterson: Some basic considerations in the analysis of intonation, J. Acoust. Soc. Am. 33, 419-425 (1961)CrossRefGoogle Scholar
  27. 2.27.
    K. Honda: Relationship between pitch control and vowel articulation. In: Vocal Fold Physiology, ed. by D.M. Bless, J.H. Abbs (College-Hill, San Diego 1983) pp. 286-297Google Scholar
  28. 2.28.
    J. Sundberg: Articulatory interpretation of the singing formant, J. Acoust. Soc. Am. 55, 838-844 (1974)CrossRefGoogle Scholar
  29. 2.29.
    J. Dang, K. Honda: Acoustic characteristics of the piriform fossa in models and humans, J. Acoust. Soc. Am. 101, 456-465 (1996)CrossRefGoogle Scholar
  30. 2.30.
    H. Takemoto, S. Adachi, T. Kitamura, P. Mokhtari, K. Honda: Acoustic roles of the laryngeal cavity in vocal tract resonance, J. Acoust. Soc. Am. 120, 2228-2238 (2006)CrossRefGoogle Scholar
  31. 2.31.
    T. Kitamura, H. Takemoto, S. Adachi, P. Mokhtari, K. Honda: Cyclicity of laryngeal cavity resonance due to vocal fold vibration, J. Acoust. Soc. Am. 120, 2239-2249 (2006)CrossRefGoogle Scholar
  32. 2.32.
    I.R. Titze, B.H. Story: Acoustic interactions of the voice source with the lower vocal tract, J. Acoust. Soc. Am. 101, 2234-2243 (1997)CrossRefGoogle Scholar
  33. 2.33.
    A. Lofqvist, N.S. McGarr, K. Honda: Laryngeal muscles and articulatory control, J. Acoust. Soc. Am. 76, 951-954 (1984)CrossRefGoogle Scholar
  34. 2.34.
    R.G. Daniloff: Normal articulation processes. In: Normal Aspect of Speech, Hearing, and Language, ed. by F.D. Minifie, T.J. Hixon, F. Williams (Prentice-Hall, Englewood Cliffs 1983) pp. 169-209Google Scholar
  35. 2.35.
    D.P. Kuehn, K.L. Moll: A cineradiographic study of VC and CV articulatory velocities, J. Phonetics 4, 303-320 (1976)Google Scholar
  36. 2.36.
    K. Honda, H. Takemoto, T. Kitamura, S. Fujita, S. Takano: Exploring human speech production mechanisms by MRI, IEICE Info. Syst. E87-D, 1050-1058 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Laboratoire de Phonétique et de Phonologie, ATR Cognitive Information LaboratoriesUniversité de la Sorbonne Nouvelle-Paris IIIParisFrance

Personalised recommendations