Conservative Extension in Positive/Negative Conditional Term Rewriting with Applications to Software Renovation Factories

  • Wan Fokkink
  • Chris Verhoef
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1577)

Abstract

We transpose a conservative extension theorem from structural operational semantics to conditional term rewriting. The result is useful for the development of software renovation factories, and for modular specification of abstract data types.

References

  1. 1.
    ANSI X3.23–1985. Programming Language – COBOL. American National Standards Institute, Inc. (1985) Google Scholar
  2. 2.
    Backus, J.W.: The syntax and semantics of the proposed international algebraic language of the Zurich ACM-GAMM conference. In: Proceedings ICIP, Unesco, Paris pp. 125–131. (1960)Google Scholar
  3. 3.
    Baeten, J., Verhoef, C.: A congruence theorem for structured operational semantics with predicates. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 477–492. Springer, Heidelberg (1993)Google Scholar
  4. 4.
    Baeten, J., Bergstra, J., Klop, J.W., Weijland, P.: Term-rewriting systems with rule priorities. Theoretical Computer Science 67(2/3), 283–301 (1989)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bergstra, J., Heering, J., Klint, P. (eds.): Algebraic Specification. ACM Press/Addison Wesley (1989)Google Scholar
  6. 6.
    Bergstra, J., Heering, J., Klint, P.: Module algebra. Journal of the ACM 37(2), 335–372 (1990)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Bergstra, J., Klop, J.W.: Process algebra for synchronous communication. Information and Control 60(1/3) (1984)Google Scholar
  8. 8.
    Bergstra, J., Klop, J.W.: Conditional rewrite rules: confluence and termination. Journal of Computer and System Sciences 32(3), 323–362 (1986)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Bol, R., Groote, J.F.: The meaning of negative premises in transition system specifications. Journal of the ACM 43(5), 863–914 (1996)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    van den Brand, M., Klint, P., Verhoef, C.: Reverse engineering and system renovation – an annotated bibliography. ACM SEN 22(1), 57–68 (1997)Google Scholar
  11. 11.
    van den Brand, M., Sellink, A., Verhoef, C.: Generation of components for software renovation factories from context-free grammars. In: Proc. 4th Working Conference on Reverse Engineering, pp. 144–155 (1997)Google Scholar
  12. 12.
    van den Brand, M., Sellink, A., Verhoef, C.: Obtaining a COBOL grammar from legacy code for reengineering purposes. In: Proc. 2nd Workshop on the Theory and Practice of Algebraic Specifications Workshops in Computing. Springer, Heidelberg (1997), http://www.springer.co.uk/ewic/workshops/
  13. 13.
    van den Brand, M., Sellink, A., Verhoef, C.: Control flow normalization for COBOL/CICS legacy systems. In: Proc. 2nd Euromicro Conference on Software Maintenance and Reengineering, pp. 11–19. IEEE Computer Society Press, Los Alamitos (1998)CrossRefGoogle Scholar
  14. 14.
    D’Argenio, P., Verhoef, C.: A general conservative extension theorem in process algebras with inequalities. Theoretical Computer Science 177, 351–380 (1997)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Dershowitz, N., Okada, M., Shivkumar, G.: Confluence of conditional rewrite systems. In: Kaplan, S., Jouannaud, J.-P. (eds.) CTRS 1987. LNCS, vol. 308, pp. 31–44. Springer, Heidelberg (1988)Google Scholar
  16. 16.
    van Deursen, A., Klint, P., Verhoef, C.: Research issues in the renovation of legacy systems. In: Finance, J.-P. (ed.) FASE 1999. LNCS, vol. 1577, pp. 1–23. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  17. 17.
    Fokkink, W., van Glabbeek, R.: Ntyft/ntyxt rules reduce to ntree rules. Information and Computation 126(1), 1–10 (1996)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Fokkink, W., Verhoef, C.: A conservative look at term deduction systems with variable binding. Report 95-28, Eindhoven University of Technology (1995) Google Scholar
  19. 19.
    Fokkink, W., Verhoef, C.: An SOS message: conservative extension for higherorder positive/negative conditional term rewriting. Report P9715, University of Amsterdam (1997) Google Scholar
  20. 20.
    Fokkink, W., Verhoef, C.: A conservative look at operational semantics with variable binding. Information and Computation 146(1), 24–54 (1998)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Ganzinger, H., Waldmann, U.: Termination proofs of well-moded logic programs via conditional rewrite systems. In: Rusinowitch, M., Remy, J.-L. (eds.) CTRS 1992. LNCS, vol. 656, pp. 430–437. Springer, Heidelberg (1993)Google Scholar
  22. 22.
    van Gelder, A., Ross, K., Schlipf, J.S.: The well-founded semantics for general logic programs. Journal of the ACM 38(3), 620–650 (1991)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proc. Logic Programming Conference, pp. 1070–1080. MIT Press, Cambridge (1988)Google Scholar
  24. 24.
    van Glabbeek, R.: The meaning of negative premises in transition system specifications II. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 502–513. Springer, Heidelberg (1996)Google Scholar
  25. 25.
    Goguen, J.: Personal Communication. (January 1993)Google Scholar
  26. 26.
    Gramlich, B.: Sufficient conditions for modular termination of conditional term rewriting systems. In: Rusinowitch, M., Remy, J.-L. (eds.) CTRS 1993. LNCS, vol. 656, pp. 128–142. Springer, Heidelberg (1993)Google Scholar
  27. 27.
    Gramlich, B.: Generalized sufficient conditions for modular termination of rewriting. Applicable Algebra in Engin., Communic. and Comput. 5, 131–158 (1994)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Groote, J.F., Vaandrager, F.: Structured operational semantics and bisimulation as a congruence. Information and Computation 100(2), 202–260 (1992)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Hartel, P.: LATOS – a lightweight animation tool for operational semantics. Report DSSE-TR-97-1, University of Southampton (1997) Google Scholar
  30. 30.
    Kaplan, S.: Conditional rewrite rules. TCS 33(2), 175–193 (1984)MATHCrossRefGoogle Scholar
  31. 31.
    Kaplan, S.: Positive/negative conditional rewriting. In: Kaplan, S., Jouannaud, J.-P. (eds.) CTRS 1987. LNCS, vol. 308, pp. 129–143. Springer, Heidelberg (1987)Google Scholar
  32. 32.
    Meinke, K., Tucker, J.: Universal algebra. In: Handbook of Logic for Computer Science, vol. I, pp. 189–411. Oxford University Press, Oxford (1993)Google Scholar
  33. 33.
    Middeldorp, A.: Modular properties of conditional term rewriting systems. Information and Computation 104(1), 110–158 (1993)MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Ohlebusch, E.: On the modularity of termination of term rewriting systems. Theoretical Computer Science 136(2), 333–360 (1994)MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Plotkin, G.: A structural approach to operational semantics. Report DAIMI FN-19, Aarhus University (1981) Google Scholar
  36. 36.
    van de Pol, J.: Operational semantics of rewriting with priorities. Theoretical Computer Science 200(1/2), 289–312 (1998)MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Przymusinski, T.: The well-founded semantics coincides with the three-valued stable semantics. Fundamenta Informaticae 13(4), 445–463 (1990)MATHMathSciNetGoogle Scholar
  38. 38.
    Sellink, A., Sneed, H., Verhoef, C.: Restructuring of COBOL/CICS legacy systems. In: Proceedings 3rd European Conference on Maintenance and Reengineering. IEEE Computer Society Press, Los Alamitos (1999)Google Scholar
  39. 39.
    Sellink, A., Verhoef, C.: Native patterns. In: Proc. 5th Working Conference on Reverse Engineering, pp. 89–103. IEEE Computer Society Press, Los Alamitos (1998)Google Scholar
  40. 40.
    Toyama, Y.: On the Church-Rosser property for the direct sum of term rewriting systems. Journal of the ACM 34(1), 128–143 (1987)MATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Toyama, Y.: Counterexamples to termination for the direct sum of term rewriting systems. Information Processing Letters 25(3), 141–143 (1987)MATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Toyama, Y., Klop, J.W., Barendregt, H.: Termination for direct sums of left linear complete term rewriting systems. Journal of the ACM 34(1), 128–143 (1987)MATHCrossRefGoogle Scholar
  43. 43.
    Verhoef, C.: A general conservative extension theorem in process algebra. In: Proc. PROCOMET 1994, IFIP Transactions A-56, pp. 149–168. Elsevier, Amsterdam (1994)Google Scholar
  44. 44.
    Verhoef, C.: A congruence theorem for structured operational semantics with predicates and negative premises. Nordic Journal of Computing 2(2), 274–302 (1995)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Wan Fokkink
    • 1
  • Chris Verhoef
    • 2
  1. 1.Department of Computer ScienceUniversity of Wales SwanseaSwanseaUK
  2. 2.Department of Computer Science, Programming Research GroupUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations