Advertisement

The Andes pp 91-121 | Cite as

Tectonic Processes along the Chile Convergent Margin

  • César R. Ranero
  • Roland von Huene
  • Wilhelm Weinrebe
  • Christian Reichert
Part of the Frontiers in Earth Sciences book series (FRONTIERS)

Abstract

The Chile subduction zone, spanning more than 3500 km, provides a unique setting for studying, along a single plate boundary, the factors that govern tectonic processes at convergent margins. At large scale, the Chile trench is segmented by the subduction of the Chile Rise, an active spreading center, and by the Juan Fernández hot spot ridge. In addition, the extreme climatic change from the Atacama Desert in the north to the glacially influenced southern latitudes produces a dramatic variability in the volume of sediment supplied to the trench. The distribution of sediment along the trench is further influenced by the high relief gradients of the segmented oceanic lithosphere.

We interpret new and reprocessed multichannel seismic reflection profiles, and multibeam bathymetric data, to study the variability in tectonic processes along the entire convergent margin. In central and south Chile, where the trench contains thick turbidite infill, accretionary prisms, some 50–60 km wide, have developed. These prisms, however, are ephemeral and can be rapidly removed by high-relief, morphological features on the incoming oceanic plate. Where topographic barriers inhibit the transport of turbidites along the trench, sediment infill abruptly decreases to less than 1 km thick and is confined to a narrow zone at the trench axis. There, all sediment is subducted; the margin is extending by normal faulting and collapsing due to basal tectonic erosion. The transition from accretion to tectonic erosion occurs over short distances (a few tens of km) along the trench.

In the turbidite-starved northern Chile trench, ~1 km of slope debris reaches the trench and is subsequently subducted. There, tectonic erosion is causing pronounced steepening of the margin, associated pervasive extension across the slope and into the emerged coastal area, and consequent collapse of the overriding plate. The volume of subducting material varies little along much of the margin. However, the composition of the material varies from slope debris of upper-plate fragments and material removed from the upper plate by basal erosion, to turbidites derived from the Andes.

Keywords

Continental Slope Triple Junction Spreading Center Accretionary Prism Middle Slope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angermann D, Klotz J, Reigber C (1999) Space-geodetic estimation of the Nazca-South America Euler Vector. Earth Planet Sci Lett 171:329–334CrossRefGoogle Scholar
  2. Ballance et al. (1989) Subduction of a large Cretaceous seamount of the Louisville ridge at the Tonga Trench: a model of normal and accelerated tectonic erosion. Tectonics 8:953–962CrossRefGoogle Scholar
  3. Bandy OL, Rudolfo KS (1964) Distribution of foraminifera and sediments, Peru-Chile Trench area. Deep Sea Res 11:817–837Google Scholar
  4. Bangs NL, Cande SC (1997) The episodic development of a convergent margin inferred from structures and processes along the southern Chile margin. Tectonics 16(3):489–505CrossRefGoogle Scholar
  5. Bangs NL, Cande SC, Lewis SD, Miller JJ (1992) Structural framework of the Chile margin at the Chile Ridge collision zone. Proc Ocean Drill Prog Initial Rep 141:11–21Google Scholar
  6. Behrmann JH, Kopf A (2001) Balance or tectonically accreted and subducted sediment at the Chile Triple Junction. Int J Earth Sci 90:753–768CrossRefGoogle Scholar
  7. Behrmann JH et al. (1992) Proceedings of the Ocean Drilling Program, Initial Reports. Volume 141. Ocean Drill. Program, College Station TXGoogle Scholar
  8. Behrmann JH, Lewis SD, Cande SC, ODP Leg 141 Scientific Party (1994) Tectonics and geology of spreading ridge subduction at the Chile Triple Junction: a synthesis of results from Leg 141 of the Ocean Drilling Program. Geol Rundsch 83:832–852CrossRefGoogle Scholar
  9. Block M (1998) Interpretations of MCS data. In: Hinz K et al. (eds) Crustal investigations off-and onshore Nazca/Central Andes (CINCA), BGR Report No. n117.613. Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, pp 69–102Google Scholar
  10. Bourgois J, Martin H, Lagabrielle Y, Le Moigne J, Frutos Jara J (1996) Subduction-erosion related to spreading-ridge subduction: Taitao Peninsula (Chile margin triple junction area). Geology 24:723–726CrossRefGoogle Scholar
  11. Bourgois J, Guivel C, Lagabrielle Y, Calmus T, Boulegue J, Daux V (2000) Glacial-interglacial trench supply variation, spreadingridge subduction, and feedback controls on the Andean margin development at the Chile triple junction area (45–48° S). J Geophys Res 105:8355–8386CrossRefGoogle Scholar
  12. Cande SC, Leslie RB (1986) Late Cenozoic tectonics of the southern Chile trench. J Geophys Res 91:471–496Google Scholar
  13. Cande SC, Leslie RB, Parra JC, Hobart M (1987) Interaction between the Chile ridge and the Chile trench: geophysical and geothermal evidence. J Geophys Res 92:495–520Google Scholar
  14. Caress DW, Chase DN (1996) Improved processing of Hydrosweep DS multibeam data on the RV Maurice Ewing. Marine Geophys Res 18:631–650CrossRefGoogle Scholar
  15. Davis DM, von Huene R (1987) Inferences on sediment strength and fault friction from structures of the Aleutian Trench. Geology 15: 517–522CrossRefGoogle Scholar
  16. Delouis BH, Philip H, Dorbath L, Cisternas A (1998) Recent crustal deformation in the Antofagasta region (northern Chile) and the subduction process. Geophys J Int 132:302–338CrossRefGoogle Scholar
  17. DeMets C, Gordon RG, Argus DF, Stein S (1990) Current plate motions. Geophys J Int 101:425–478Google Scholar
  18. Diaz JL (1999) Sediment subduction and accretion at the Chilean convergent margin between 35° and 40°S. PhD thesis, Christian-Albrechts-Universität zu KielGoogle Scholar
  19. Fisher RL, Raitt RW (1962) Topography and structure of the Peru-Chile trench. Deep Sea Res 9:423–443Google Scholar
  20. Flueh ER, Vidal N, Ranero CR, Hojka A, von Huene R, Bialas J, Hinz K, Cordoba D, Dañobeitia JJ, Zelt C (1998) Seismic investigation of the continental margin off-and onshore Valparaiso, Chile. Tectonophysics 288:251–263CrossRefGoogle Scholar
  21. Hartley AJ, Jolley EJ (1995) Tectonic implications of Late Cenozoic sedimentation from the Coastal Cordillera of northern Chile (22–24°S). J Geol Soc London 152:51–63Google Scholar
  22. Hilde TWC (1983) Sediment subduction vs. accretion around the Pacific. Tectonophysics 99:381–397CrossRefGoogle Scholar
  23. Husen S, Kissling E, Flueh E, Asch G (1999) Accurate hypocenter determination in the seimogenic zone of the subducting Nazca plate in north Chile using a combined on-/offshore network. Geophys J Int 138:687–701CrossRefGoogle Scholar
  24. Husen S, Kissling E, Flueh ER (2000) Local earthquake tomography of shallow subduction in north Chile: a combined onshore and offshore study. J Geophys Res 105:28183–28198CrossRefGoogle Scholar
  25. Jarrard RD (1986) Relations among subduction parameters. Rev Geophys 24(2):217–284Google Scholar
  26. Kendrick E, Bevis M, Smalley R Jr, Brooks B, Vargas RB, Lauría E, Fortes LPS (2003) The Nazca-South America Euler vector and its rate of change. J S Am Earth Sci 16:125–131CrossRefGoogle Scholar
  27. Kimura G, et al. (1997) Proceedings of the Ocean Drilling Program, Initial Reports, Volume 170. Ocean Drill Prog, College Station, TXGoogle Scholar
  28. Kudrass HR, Von Rad U, Seyfied H, Andruleit H, Hinz K, Reichert C (1998) Age and facies of sediments of the northern Chilean continental slope — evidence for intense vertical movements, in Crustal investigations off-and onshore Nazca/Central Andes (CINCA). In: Hinz K et al. (eds) BGR Report No. 117.613, Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, pp 170–196Google Scholar
  29. Lagabrielle Y, Guivel C, Maury R, Bourgois J, Fourcade S, Martin H (2000) Magmatic-tectonic effects of high thermal regime at the site of active ridge subduction: the Chile triple junction model. Tectonophysics 326:255–268CrossRefGoogle Scholar
  30. Lamb S, Davis P (2003) Cenozoic climate change as a possible cause for the rise of the Andes. Nature 425:792–797CrossRefGoogle Scholar
  31. Laursen J, Scholl D, von Huene R (2002) Neotectonic deformation of the central Chile margin: deepwater forearc basin formation in response to hot spot ridge and seamount subduction. Tectonics 21: doi 10,1029/2001TC901023Google Scholar
  32. Loveless JP, Hoke GD, Allmendinger RW, González G, Isacks BL, Carrizo DA (2005) Pervasive cracking of the northern Chilean Coastal Cordillera: new evidence of forearc extension. Geology 33:973–976CrossRefGoogle Scholar
  33. Miller H (1970) Das Problem des hypothetischen “Pazifischen Kontinentes” gesehen von der chilenischen Pazifikkuste. Geol Rundsch 59:927–938CrossRefGoogle Scholar
  34. Polonia A, Brancolini G, Torelli L, Vera E (1999) Structural variabilità at the active continental margin off southernmost Chile. J Geodyn 27:289–307CrossRefGoogle Scholar
  35. Polonia A, Brancolini G, Loreto MF, Torelli L (2001) The accretionary complex of southernmost Chile from the analysis of multichannel seismic data. Terra Antartica 8:87–98Google Scholar
  36. Ranero CR, von Huene R (2000) Subduction erosion along the Middle America convergent margin. Nature 404:748–752CrossRefGoogle Scholar
  37. Ranero CR, von Huene R, Flueh E, Duarte M, Baca D, McIntosh K (2000) A cross-section of the convergent Pacific margin of Nicaragua. Tectonics 19:335–357CrossRefGoogle Scholar
  38. Ranero CR, von Huene R, Weinrebe W, Barckhausen U (in press) Convergent margin tectonics of Middle America: a marine perspective. In: Alvarado G (ed) Central America, Geology, Hazards and Resources. AA Balkema PublisherGoogle Scholar
  39. Rubio E, Torné M, Vera E, Diaz A (2000) Crustal structure of the southernmost Chilean margin from seismic and gravity data. Tectonophysics 323:39–60CrossRefGoogle Scholar
  40. Rutland RWR (1971) Andean orogeny and ocean floor spreading. Nature 233:252–255CrossRefGoogle Scholar
  41. Sallares V, Banero CR (2005) Structure of the North Chile erosional convergent margin off Antofagasta (23°30′ S). J Geophys Res 110: doi 10.1029/2004JB003418Google Scholar
  42. Sandwell DT, Smith WHF (1997) Marine gravity anomaly from Geosat and ERS-1 satellite altimetry. J Geophys Res 102:10039–10050CrossRefGoogle Scholar
  43. Scholl DW, Christensen MN, von Huene R, Marlow MS (1970) Peru-Chile trench sediments and sea-floor spreading. Geol Soc Am Bull 81:1339–1360Google Scholar
  44. Scholl DW, von Huene R, Vallier TL, Howell DG (1980) Sedimentary masses and concepts about tectonic processes at underthrust ocean margins. Geology 8:564–568CrossRefGoogle Scholar
  45. Schweller WJ, Kulm LD, Prince RA (1981) Tectonics structure, and sedimentary framework of the Perú-Chile Trench. In: Kulm LD, et al. (eds) Nazca Plate: Crustal formation and Andean convergence. Mem Geol Soc Am 154:323–349Google Scholar
  46. Smith WHF, Sandwell DT (1994) Bathymetric predictions from dense altimetry and sparse shipboard bathymetry. J Geophys Res 99: 21803–21824CrossRefGoogle Scholar
  47. Sobolev SV, Babeyko AY (2005) What drives orogeny in the Andes? Geology 33:617–62CrossRefGoogle Scholar
  48. Tebbens SF, Cande SC, Kovacs L, Parra JC, LaBreque JL, Vergara H (1997) The Chile ridge: a tectonic framework. J Geophys Res 102: 2035–2059CrossRefGoogle Scholar
  49. Uyeda S, Kanamori H (1979) Back-arc opening and the mode of subduction. J Geophys Res 84:1049–1061CrossRefGoogle Scholar
  50. Vannucchi P, Ranero CR, Galeotti S, Straub SM, Scholl DW, McDougall Ried K (2003) Fast rates of subduction erosion along the Costa Rica Pacific margin: implications for non-steady rates of crustal recycling at subduction zones. J Geophys Res 108: doi 10.1029/2002JB002207Google Scholar
  51. Vannucchi P, Galeotti S, Clift PD, Ranero CR, von Huene R (2004) Long term subduction erosion along the Middle America Trench offshore Guatemala. GeologyGoogle Scholar
  52. von Huene R, Ranero CR (2003) Subduction erosion and basal friction along the sediment starved convergent margin off Antofagasta Chile. J Geophys Res 108: doi 10.1029/2001JB001569Google Scholar
  53. von Huene R, Scholl D (1991) Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev Geophys 29:279–316Google Scholar
  54. von Huene R, Corvalan J, Flueh ER, Hinz K, Korstgard J, Ranero CR, Weinrebe W, CONDOR Scientists (1997) Tectonic control of the subducting Juan Fernández Ridge on the Andean margin near Valparaiso, Chile. Tectonics 16:474–488CrossRefGoogle Scholar
  55. von Huene R, Ranero CR, Weinrebe W, Hinz K (2000) Quaternary convergent margin tectonics of Costa Rica, segmentation of the Cocos Plate, and Central American volcanism. Tectonics 19:314–334CrossRefGoogle Scholar
  56. von Huene R, Ranero CR, Vannucchi P (2004) A model for subduction erosion. Geology 32:913–916CrossRefGoogle Scholar
  57. Watts P, Grilli SR (2002) Tsunami generation by submarine mass failure, I: Wavemaker modes. J Wtrwy Port Coast Oc EngrgGoogle Scholar
  58. Wessel P, Smith WHF (1998) New improved version of generic mapping tools released. EOS 79(47):579CrossRefGoogle Scholar
  59. Yañez GA, Ranero CR, von Huene R, Díaz J (2001) A tectonic interpretation of magnetic anomalies across a segment of the convergent margin of the Southern Central Andes (32°–34°S). J Geophys Res 106:6325–6345CrossRefGoogle Scholar
  60. Yañez GA, Cembrano J, Pardo M, Ranero CR, Selles D (2002) The Challenger-Juan Fernández-Maipo major tectonic transition of the Nazca-Andean subduction system at 33°–34°S: geodynamic evidences and implications. J S Am Earth Sci 15:23–38CrossRefGoogle Scholar
  61. Zelt CA, Hojka AM, Flueh ER, McIntosh KD (1999) 3D simultaneous seismic refraction and reflection tomography of wide-angle data from the central Chilean margin. Geophys Res Lett 26: 2577–2580CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • César R. Ranero
    • 1
  • Roland von Huene
    • 2
  • Wilhelm Weinrebe
    • 2
  • Christian Reichert
    • 3
  1. 1.Instituto de Ciencias del MarBarcelonaSpain
  2. 2.IfM-GEOMARKielGermany
  3. 3.Bundesanstalt für Geowissenschaften und Rohstoffe (BGR)HannoverGermany

Personalised recommendations