A congruence theorem for structured operational semantics with predicates and negative premises

  • C. Verhoef
Part of the Lecture Notes in Computer Science book series (LNCS, volume 836)

Abstract

We proposed a syntactic format, the panth format, for structured operational semantics in which besides ordinary transitions also predicates, negated predicates, and negative transitions may occur such that if the rules are stratifiable, strong bisimulation equivalence is a congruence for all the operators that can be defined within the panth format. To show that this format is useful we took some examples from the literature satisfying the panth format but no formats proposed by others. The examples touch upon issues such as priorities, termination, convergence, discrete time, recursion, (infinitary) Hennessy-Milner logic, and universal quantification. Collation: pp. 16, ill. 2, tab. 5, ref. 25.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. Aceto, M. Hennessy, Termination, deadlock and divergence, JACM, 39 (1): 147–187, Januari 1992.CrossRefMATHMathSciNetGoogle Scholar
  2. [2]
    J. C. M. Baeten, J. A. Bergstra, Discrete Time Process Algebra, Report P9208b, Amsterdam, 1992. An extended abstract appeared in: W. R. Cleaveland, editor, Proceedings CONCUR 92, Stony Brook, LNCS 630, pp. 456–471, Springer-Verlag, 1992.Google Scholar
  3. [3]
    J. C. M. Baeten, J. A. Bergstra, Process algebra with a zero object, in: J. C. M. Baeten and J. W. Klop, editors, Proceedings CONCUR 90, Amsterdam, LNCS 458, pp. 83–98, Springer-Verlag, 1990.Google Scholar
  4. [4]
    J. C. M. Baeten, J. A. Bergstra, Processen en Procesexpressies, Informatie, 30 (3), pp. 177–248, 1988.MathSciNetGoogle Scholar
  5. [5]
    J. C. M. Baeten and C. Verhoef, A congruence theorem for structured operational semantics with predicates, in: E. Best (ed.), Proceedings CONCUR 93, LNCS 715, pp. 477–492, Springer-Verlag, 1993.Google Scholar
  6. [6]
    J. C. M. Baeten, W. P. Weijland, Process algebra, Cambridge Tracts in Theoretical Computer Science 18, Cambridge University Press, 1990.Google Scholar
  7. [7]
    J. A. Bergstra, A. Ponse, J. J. van Wamel, Process algebra with backtracking, Report P9306, Programming Research Group, University of Amsterdam, 1993.Google Scholar
  8. [8]
    B. Bloom, S. Istrail, and A. R. Meyer, Bisimulation can’t be traced: preliminary report, In: Proceedings 15th POPL, San Diego, California, pp. 229–239, 1988.Google Scholar
  9. [9]
    R. N. Bol and J. F. Groote, The meaning of negative premises in transition sytem specifications, Report CS-R9054, CWI, Amsterdam, 1990 An extended abstract appeared in J. Leach Albert, B. Monien, and M. Rodriguez Artalejo, editors, Proceedings 18th ICALP, Madrid, pp. 481–494, 1991Google Scholar
  10. [10]
    T. Bolognesi and F. Lucidi, Timed process algebras with urgent interactions and a unique powerful binary operator, In J. W. de Bakker, C. Huizing, W. P. de Roever, and G. Rozenberg, editors, Proceedings of the REX Workshop “Real-time: Theory in Practice”, LNCS 600, pp. 124–148, 1992.Google Scholar
  11. [11]
    W. J. Fokkink, personal communication, January 1993.Google Scholar
  12. [12]
    W. J. Fokkink, The tyft/tyxt format reduces to tree rules, in TACS’94, Masami Hagiya, John C. Mitchell, Eds., pp. 440–453, LNCS 789, Sendai, Japan.Google Scholar
  13. [13]
    R. J. van Glabbeek, Bounded nondeterminism and the approximation induction principle in process algebra, In: Proceedings STACS 87 (F. J. Brandenburg, G. Vidal-Naquet, M. Wirsing, Eds.), LNCS 247, Springer Verlag, pp. 336–347, 1987.Google Scholar
  14. [14]
    J. F. Groote, Transition system specifications with negative premises, Report CS-R9850, CWI, Amsterdam, 1989. An extended abstract appeared in J. C. M. Baeten and J. W. Klop, editors, Proceedings CONCUR 90, Amsterdam, LNCS 458, pp. 332–341, Springer-Verlag, 1990.Google Scholar
  15. [15]
    J. F. Groote and F. W. Vaandrager, Structured operational semantics and bisimulation as a congruence, I zhaohuan C 100 (2), pp. 202–260, 1992.MATHMathSciNetGoogle Scholar
  16. [16]
    M. Hennessy, R. Milner, Algebraic laws for nondeterminism and concurrency, JACM 32(1), pp. 137–161.Google Scholar
  17. [17]
    A. S. Klusener, Completeness in real time process algebra, Technical Report CS-R9106, CWI, Amsterdam, 1991. An extended abstract appeared in J. C. M. Baeten and J. F. Groote, editors, Proceedings CONCUR 91, Amsterdam, LNCS 527, pp. 376–392, 1991.Google Scholar
  18. [18]
    K. G. Larsen, Modal Specifications, Technical Report R89–09, Institute for Electronic Systems, The University of Aalborg, 1989.Google Scholar
  19. [19]
    K. G. Larsen, A. Skou, Compositional Verification of Probabilistic Processes, in: W. R. Cleave-land, editor, Proceedings CONCUR 92, Stony Brook, LNCS 630, pp. 456–471, Springer-Verlag, 1992.Google Scholar
  20. [20]
    F. Moller and C. Tofts, A Temporal Calculus of Communicating Systems, in: J. C. M. Baeten and J. W. Klop, editors, Proceedings CONCUR 90, Amsterdam, LNCS 458, pp. 401–415 Springer-Verlag, 1990.Google Scholar
  21. [21]
    D. M. R. Park, Concurrency and automata on infinite sequences, In P. Duessen (ed.) 5th GI Conference, LNCS 104, pp. 167–183, Springer-Verlag, 1981.Google Scholar
  22. [22]
    G. D. Plotkin, A structural approach to operational semantics, Report DAIMI FN-19, Computer Science Department, Aarhus University, 1981.Google Scholar
  23. [23]
    R. de Simone, Higher-level synchronising devices in MEIJE-SCCS, TCS 37, pp. 245–267, 1985.CrossRefMATHGoogle Scholar
  24. [24]
    F. W. Vaandrager, personal communication, April 1993.Google Scholar
  25. [25]
    C. Verhoef, A general conservative extension theorem in process algebra, Report CSN 93/38, Eindhoven University of Technology, 1993. Note: to appear in the Proceedings of the IFIP Working Conference on Programming Concepts, Methods and Calculi, San Miniato, Italy, 1994.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • C. Verhoef
    • 1
  1. 1.Department of Mathematics and Computing ScienceEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations