Advertisement

Metaheuristics for University Course Timetabling

  • Rhydian Lewis
  • Ben Paechter
  • Olivia Rossi-Doria
Part of the Studies in Computational Intelligence book series (SCI, volume 49)

Keywords

Tabu Search Problem Instance Soft Constraint Hard Constraint Timetabling Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
  2. [2]
  3. [3]
    D. Abramson, “Constructing School Timetables using Simulated Annealing: Sequential and Parallel Algorithms, ”Management Science, vol. 37, pp. 98-113, 1991.CrossRefGoogle Scholar
  4. [4]
    D. Abramson, H. Krishnamoorthy, and H. Dang,“ Simulated Annealing Cool-ing Schedules for the School Timetabling Problem, ”Asia-Pacific Journal of Operational Research, vol. 16, pp. 1-22, 1996.MathSciNetGoogle Scholar
  5. [5]
    H. Arntzen and A. Løkketangen, “A Tabu Search Heuristic for a University Timetabling Problem, ”in Metaheuristics: Progress as Real Problem Solvers, vol. 32, Computer Science Interfaces Series, T Ikabaki, K. Nonobe, and M. Yagiura, Eds. Berlin: Springer-Verlag, 2005, pp. 65-86.CrossRefGoogle Scholar
  6. [6]
    M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp, “A Racing Algorithm for Configuring Metaheuristics, ”presented at The Genetic and Evolutionary Computation Conference (GECCO) 2002, New York, 2002.Google Scholar
  7. [7]
    D. Brelaz, “New methods to color the vertices of a graph, ”Commun. ACM, vol. 22, pp. 251-256, 1979.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    E. Burke, D. Elliman, and R. Weare, “Specialised Recombinative Operators for Timetabling Problems,” in The Artificial Intelligence and Simulated Behaviour Workshop on Evolutionary Computing, vol. 993, Lecture Notes in Computer Science. Berlin: Springer-Verlag, 1995, pp. 75-85.Google Scholar
  9. [9]
    E. Burke, D. Elliman, and R. Weare, “The Automation of the Timetabling Process in Higher Education, ”Journal of Education Technology Systems, vol. 23, pp. 257-266, 1995.Google Scholar
  10. [10]
    E. Burke, D. Elliman, and R. Weare, “A Hybrid Genetic Algorithm for Highly Constrained Timetabling Problems., ” presented at Genetic Algo-rithms: Proceedings of the Sixth International Conference (ICGA95), 1995.Google Scholar
  11. [11]
    E. Burke and M. Petrovic, “Recent Research Directions in Automated Time-tabling, ”European Journal of Operational Research, vol. 140, pp. 266-280, 2002.zbMATHCrossRefGoogle Scholar
  12. [12]
    E. K. Burke, D. G. Elliman, P. H. Ford, and R. Weare, “Examination Time- tabling in British Universities: A Survey, ”in Practice and Theory of Auto-mated Timetabling (PATAT) I, vol. 1153, Lecture Notes in Computer Science, E. Burke and P. Ross, Eds. Berlin: Springer-Verlag, 1996, pp. 76-92.Google Scholar
  13. [13]
    E. K. Burke and J. P. Newall, “A Multi-Stage Evolutionary Algorithm for the Timetable Problem, ”IEEE Transactions on Evolutionary Computation, vol. 3, pp. 63-74, 1999.CrossRefGoogle Scholar
  14. [14]
    M. Carter, “A Survey of Practical Applications of Examination Timetabling Algorithms, ”Operations Research, vol. 34, pp. 193-202, 1986.CrossRefMathSciNetGoogle Scholar
  15. [15]
    M. Carter and G. Laporte, “Recent Developments in Practical Examination Timetabling, ”in Practice and Theory of Automated Timetabling (PATAT) I, vol. 1153, E. Burke and P. Ross, Eds. Berlin: Springer-Verlag, 1996, pp. 3-21.Google Scholar
  16. [16]
    M. Carter, G. Laporte, and S. Y. Lee, “Examination Timetabling: Algorithmic Strategies and Applications, ”Journal of the Operational Research Society, vol. 47, pp. 373-383, 1996.CrossRefGoogle Scholar
  17. [17]
    M. Carter and G. Laporte, “Recent Developments in Practical Course Time- tabling, ”in Practice and Theory of Automated Timetabling (PATAT) II, vol. 1408, Lecture Notes in Computer Science, E. Burke and M. Carter, Eds. Ber-lin: Springer-Verlag, 1998, pp. 3-19.Google Scholar
  18. [18]
    S. Casey and J. Thompson, “GRASPing the Examination Scheduling Prob-lem, ”in Practice and Theory of Automated Timetabling (PATAT) IV, vol. 2740, Lecture Notes in Computer Science, E. Burke and P. De Causmaecker, Eds. Berlin: Springer-Verlag, 2002, pp. 233-244.Google Scholar
  19. [19]
    M. Chiarandini, K. Socha, M. Birattari, and O. Rossi-Doria, “An Effective Hybrid Approach for the University Course Timetabling Problem, ”Technical Report AIDA-2003-05, FG Intellektik, FB Informatik, TU Darmstadt, Ger-many, 2003.Google Scholar
  20. [20]
    A. Colorni, M. Dorigo, and V. Maniezzo, “Metaheuristics for high-school timetabling, ”Computational Optimization and Applications, vol. 9, pp. 277-298, 1997.Google Scholar
  21. [21]
    T. Cooper and J. Kingston, “The Complexity of Timetable Construction Problems, ”in Practice and Theory of Automated Timetabling (PATAT ) I, vol. 1153, Lecture Notes in Computer Science, E. Burke and P. Ross, Eds. Berlin: Springer-Verlag, 1996, pp. 283-295.Google Scholar
  22. [22]
    D. Corne, P. Ross, and H. Fang, “Evolving Timetables, ”in The Practical Handbook of Genetic Algorithms, vol. 1, L. C. Chambers, Ed.: CRC Press, 1995, pp. 219-276.Google Scholar
  23. [23]
    P. Cote, T. Wong, and R. Sabourin, “Application of a Hybrid Multi-Objective Evolutionary Algorithm to the Uncapacitated Exam Proximity Problem, ”in Practice and Theory of Automated Timetabling (PATAT) V, vol. 3616, Lec-ture Notes in Computer Science, E. Burke and M. Trick, Eds. Berlin: Springer-Verlag, 2005, pp. 294-312.CrossRefGoogle Scholar
  24. [24]
    P. Cowling, S. Ahmadi, P. Cheng, and R. Barone, “Combining Human and Machine Intelligence to Produce Effective Examination Timetables, ” pre-sented at The Forth Asia-Pacific Conference on Simulated Evolution and Learning (SEAL2002), Singapore, 2002.Google Scholar
  25. [25]
    A. E. Eiben, J. K. van der Hauw, and J. I. van Hemert, “Graph Coloring with Adaptive Evolutionary Algorithms, ”Journal of Heuristics, vol. 4, pp. 25-46, 1998.zbMATHCrossRefGoogle Scholar
  26. [26]
    S. Elmohamed, G. Fox, and P. Coddington, “A Comparison of Annealing Techniques for Academic Course Scheduling, ”in Practice and Theory of Automated Timetabling (PATAT) II, vol. 1408, Lecture Notes in Computer Science, E. Burke and M. Carter, Eds. Berlin: Springer-Verlag, 1998, pp. 146-166.Google Scholar
  27. [27]
    E. Erben, “A Grouping Genetic Algorithm for Graph Colouring and Exam Timetabling, ”in Practice and Theory of Automated Timetabling (PATAT) III, vol. 2079, Lecture Notes in Computer Science, E. Burke and W. Erben, Eds. Berlin: Springer-Verlag, 2001, pp. 132-158.CrossRefGoogle Scholar
  28. [28]
    S. Even, A. Itai, and A. Shamir, “On the complexity of Timetable and Multi- commodity Flow Problems, ”SIAM Journal of Computing, vol. 5, pp. 691- 703, 1976.zbMATHCrossRefMathSciNetGoogle Scholar
  29. [29]
    E. Falkenauer, Genetic Algorithms and Grouping Problems: John Wiley and Sons, 1998.Google Scholar
  30. [30]
    S. Kirkpatrick, C. Gelatt, and M. Vecchi, “Optimization by Simulated An-nealing, ”Science, pp. 671-680, 1983.Google Scholar
  31. [31]
    P. Kostuch, “The University Course Timetabling Problem with a 3-Phase Approach, ”in Practice and Theory of Automated Timetabling (PATAT) V, vol. 3616, Lecture Notes in Computer Science, E. Burke and M. Trick, Eds. Berlin: Springer-Verlag, 2005, pp. 109-125.CrossRefGoogle Scholar
  32. [32]
    R. Lewis and B. Paechter, “New Crossover Operators for Timetabling with Evolutionary Algorithms, ”presented at The Fifth International Conference on Recent Advances in Soft Computing RASC2004, Nottingham, England, 2004.Google Scholar
  33. [33]
    R. Lewis and B. Paechter, “Application of the Grouping Genetic Algorithm to University Course Timetabling, ”in Evolutionary Computation in Combinato rial Optimization (EvoCop), vol. 3448, Lecture Notes in Computer Science, G. Raidl and J. Gottlieb, Eds. Berlin: Springer-Verlag, 2005, pp. 144-153.Google Scholar
  34. [34]
    R. Lewis and B. Paechter, “An Empirical Analysis of the Grouping Genetic Algorithm: The Timetabling Case, ”presented at the IEEE Congress on Evo-lutionary Computation (IEEE CEC) 2005, Edinburgh, Scotland, 2005.Google Scholar
  35. [35]
    R. Lewis and B. Paechter, “Finding Feasible Timetables using Group Based Operators,” (Forthcoming) Accepted for publication in the IEEE Trans. Evo-lutionary Computation, 2006.Google Scholar
  36. [36]
    Z. Michalewicz, “The Significance of the Evaluation Function in Evolution- ary Algorithms,” presented at The Workshop on Evolutionary Algorithms, Institute for Mathematics and Its Applications, University of Minnesota, Minneapolis, Minnesota, 1998.Google Scholar
  37. [37]
    B. Paechter, R. Rankin, A. Cumming, and T. Fogarty, “Timetabling the Classes of an Entire University with an Evolutionary Algorithm, ”in Parallel Problem Solving from Nature (PPSN) V, vol. 1498, Lecture Notes in Com-puter Science, T. Baeck, A. Eiben, M. Schoenauer, and H. Schwefel, Eds. Berlin: Springer-Verlag, 1998, pp. 865-874.Google Scholar
  38. [38]
    J. T. Richardson, M. R. Palmer, G. Liepins, and M. Hilliard, “Some Guide-lines for Genetic Algorithms with Penalty Functions., ”in the Third International Conference on Genetic Algorithms, J. D. Schaffer, Ed. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc, 1989, pp. 191-197.Google Scholar
  39. [39]
    P. Ross, D. Corne, and H.-L. Fang, “Improving Evolutionary Timetabling with Delta Evaluation and Directed Mutation, ”in Parallel Problem Solving from Nature (PPSN) III, vol. 866, Lecture Notes in Computer Science, Y. Davidor, H. Schwefel, and M. Reinhard, Eds. Berlin: Springer-Verlag, 1994, pp. 556-565.Google Scholar
  40. [40]
    P. Ross, D. Corne, and H. Terashima-Marin, “The Phase-Transition Niche for Evolutionary Algorithms in Timetabling, ”in Practice and Theory of Auto mated Timetabling (PATAT) I, vol. 1153, Lecture Notes in Computer Science, E. Burke and P. Ross, Eds. Berlin: Springer-Verlag, 1996, pp. 309-325.Google Scholar
  41. [41]
    P. Ross, E. Hart, and D. Corne, “Genetic Algorithms and Timetabling, ”in Advances in Evolutionary Computing: Theory and Applications, A. Ghosh and K. Tsutsui, Eds.: Springer-Verlag, New York., 2003, pp. 755-771.Google Scholar
  42. [42]
    O. Rossi-Doria, J. Knowles, M. Sampels, K. Socha, and B. Paechter, “A Lo-cal Search for the Timetabling Problem, ”presented at Practice And Theory of Automated Timetabling (PATAT) IV, Gent, Belgium, 2002.Google Scholar
  43. [43]
    O. Rossi-Doria, M. Samples, M. Birattari, M. Chiarandini, J. Knowles, M. Manfrin, M. Mastrolilli, L. Paquete, B. Paechter, and T. Stützle, “A Compari-son of the Performance of Different Metaheuristics on the Timetabling Prob-lem, ”in Practice and Theory of Automated Timetabling (PATAT) IV, vol. 2740, Lecture Notes in Computer Science, E. Burke and P. De Causmaecker, Eds. Berlin: Springer-Verlag, 2002, pp. 329-351.Google Scholar
  44. [44]
    W. Salwach, “Genetic Algorithms in Solving Constraint Satisfaction Prob- lems: The Timetabling Case, ”Badania Operacyjne i Decyzje, 1997.Google Scholar
  45. [45]
    A. Schaerf, “Tabu Search Techniques for Large High-School Timetabling Problems, ”in Proceedings of the Thirteenth National Conference on Artificial Intelligence. Portland (OR): AAAI Press/ MIT Press, 1996, pp. 363-368.Google Scholar
  46. [46]
    A. Schaerf, “A Survey of Automated Timetabling,” Artificial Intelligence Review, vol. 13, pp. 87-127, 1999.CrossRefGoogle Scholar
  47. [47]
    K. Socha and M. Samples, “Ant Algorithms for the University Course Time- tabling Problem with Regard to the State-of-the-Art, ”in Evolutionary Com-putation in Combinatorial Optimization (EvoCOP 2003), vol. 2611, Lecture Notes in Computer Science. Berlin: Springer-Verlag, 2003, pp. 334-345.Google Scholar
  48. [48]
    H. Terashima-Marin, P. Ross, and M. Valenzuela-Rendon, “Evolution of Constraint Satisfaction Strategies in Examination Timetabling, ”presented at The Genetic and Evolutionary Computation Conference (GECCO), 2000.Google Scholar
  49. [49]
    J. M. Thompson and K. A. Dowsland, “A Robust Simulated Annealing based Examination Timetabling System, ”Computers and Operations Research, vol. 25, pp. 637-648, 1998.zbMATHCrossRefGoogle Scholar
  50. [50]
    P. van Laarhoven and E. Aarts, Simulated Annealing: Theory and Applica-tions. Reidel, The Netherlands: Kluwer Academic Publishers, 1987.Google Scholar
  51. [51]
    G. White and W. Chan, “Towards the Construction of Optimal Examination Schedules, ”INFOR, vol. 17, pp. 219-229, 1979.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Rhydian Lewis
    • 1
  • Ben Paechter
    • 2
  • Olivia Rossi-Doria
    • 3
  1. 1.Centre for Emergent ComputingNapier UniversityEdinburghScotland
  2. 2.Centre for Emergent ComputingNapier UniversityEdinburghScotland
  3. 3.Dipartimento di Matematica Pura ed ApplicataUnivesita' degli Studi di PadovaPaduaItaly

Personalised recommendations