Light Scattering Reviews 3 pp 27-67

Part of the Springer Praxis Books book series (PRAXIS)

Statistical interpretation of light anomalous diffraction by small particles and its applications in bio-agent detection and monitoring

  • Min Xu
  • A. Katz

Abstract

Light scattering by small particles is one of the most powerful techniques for probing the properties of particulate systems and has numerous applications in particle characterization and remote sensing of, for example, clouds and aerosols, interplanetary dust, marine environment, bacteria, biological cells and tissues. This subject, governed by Maxwell’s electromagnetic theory of light, developed in the later nineteenth century, was first summarized in van de Hulst’s classic 1957 work [1], since Lorentz [2], Mie [3], Rayleigh [4] and Tyndall [5] laid the foundations of light scattering. The field is yet vigorous and ever expanding, documented by the current interest and the increasing number of publications. Light scattering by small particles is actively being pursued, especially for non-spherical particles (see, for example, the review volume edited by Mishchenko, Hovenier and Travis [6]). Alongside the availability of computational capability and the advance of numerical methods based on an exact theory, approximate theories of light scattering are still attractive in providing both simpler alternatives and much more direct physical interpretations. Approximation theories are appealing in inverse problems such as remote sensing where the error introduced by the approximate theory can be negligible compared to that introduced by a priori assumptions. Approximation theories are sometimes also mandatory in cases (for example, computation of the optical efficiencies of particles of large size parameters and aspect ratios) where the exact numerical methods such as the T-matrix method [7] fail due to the limitation of current computational resources and floating point accuracy.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.C. van de Hulst: Light scattering by small particles (Dover, New York, 1981)Google Scholar
  2. 2.
    L. Lorenz: “Lysbevzgelsen i og uden for en af plane lysbølger belyst kugle”, K. Dan. Vidensk. Selsk. Forh. 6, 1–62 (1890)Google Scholar
  3. 3.
    G. Mie: “Beitrage zur optik trüber medien speziell kolloidaler metallösungen”, Ann. Phys. pp. 377–445 (1908)Google Scholar
  4. 4.
    L. Rayleigh: “On the electromagnetic theory of light”, Phil. Mag. 12, 81–101 (1881)Google Scholar
  5. 5.
    J. Tyndall: “Described experimental studies of the scattering of light from aerosols”, Phil. Mag. 37, 384–394 (1869)Google Scholar
  6. 6.
    M.I. Mishchenko, J.W. Hovenier, L.D. Travis (eds): Light scattering by nonspherical particles: theory, measurements, and applications (Academic Press, San Diego, 1999)Google Scholar
  7. 7.
    M.I. Mishchenko, L.D. Travis: “Capabilities and limitations of a current Fortran implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers”, J. Quant. Spectrosc. Radiat. Transfer 60, 309–324 (1998)CrossRefGoogle Scholar
  8. 8.
    M. Kerker: The scattering of light and other electromagnetic radiation (Academic Press, New York, 1969)Google Scholar
  9. 9.
    G. Gouesbet, G. Gréhan: Optical particle sizing: theory and practice (Plenum Press, New York, 1988)Google Scholar
  10. 10.
    A.J. Baran, J.S. Foot, D.L. Mitchell: “Ice-crystal absorption: A comparison between theory and implications for remote sensing”, Appl. Opt. 37(12), 2207–2215 (1998)CrossRefGoogle Scholar
  11. 11.
    A.R. Jones: “Light scattering for particle characterization”, Progress in Energy and Combustion Science 25, 1–53 (1999)CrossRefGoogle Scholar
  12. 12.
    A. Katz, A. Alimova, M. Xu, P. Gottlieb, E. Rudolph, J.C. Steiner, R.R. Alfano: “In situ determination of refractive index and size of Bacillus spores by light extinction”, Opt. Lett. 30, 589–591 (2005)CrossRefGoogle Scholar
  13. 13.
    M. Xu: “Superposition rule for light scattering by a composite particle”, Opt. Lett. 31, 3223–3225 (2006)CrossRefGoogle Scholar
  14. 14.
    M. Xu, T.T. Wu, J.Y. Qu: “Elastic light scattering by cells: from Mie scattering to fractal scattering”, in Biomedical Applications of Light Scattering (2007), Vol. 6446 of Proceedings of SPIEGoogle Scholar
  15. 15.
    T.T. Wu, M. Xu, J.Y. Qu: “Light scattering spectroscopy of cells: a study based on Mie and fractal models”, in Biomedical Applications of Light Scattering (2007), Vol. 6446 of Proceedings of SPIEGoogle Scholar
  16. 16.
    L.P. Bayvel, A.R. Jones: Electromagnetic scattering and its applications (Applied Science Publishers, London, 1981)Google Scholar
  17. 17.
    C.F. Bohren, D.R. Huffman: Absorption and scattering of light by small particles (John Wiley, New York, 1983)Google Scholar
  18. 18.
    K.S. Shifrin, G.S. Tonna: “Inverse problems related to light scattering in the atmosphere and ocean”, Adv. Geophys. 34, 175–252 (1993)Google Scholar
  19. 19.
    G.L. Stephens: Remote sensing of the lower atmosphere (Oxford University Press, New York, 1994)Google Scholar
  20. 20.
    A.A. Kokhanovsky: Optics of light scattering media: problems and solutions (Wiley, Portland, 1999)Google Scholar
  21. 21.
    R. Xu: Particle characterization: light scattering methods (Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000)Google Scholar
  22. 22.
    M.I. Mishchenko, L.D. Travis, A.A. Lacis: Scattering, absorption and emission of light by small particles (Cambridge University Press, 2002)Google Scholar
  23. 23.
    S.K. Sharma, D.J. Sommerford: Light scattering by optically soft particles: theory and applications (Springer, New York, 2006)Google Scholar
  24. 24.
    S.A. Ackerman, G.L. Stephens: “The absorption of solar radiation by cloud droplets: an application of anomalous diffraction theory”, J. Atmos. Sci. 44(12), 1574–1588 (1987)CrossRefGoogle Scholar
  25. 25.
    W.A. Farone, M.J.I. Robinson: “The range of validity of the anomalous diffraction approximation to electromagnetic scattering by a sphere”, Appl. Opt. 7(4), 643–645 (1968)Google Scholar
  26. 26.
    F.D. Bryant, P. Latimer: “Optical efficiencies of large particles of arbitrary shape and orientation”, J. Colloid Interface Sci. 30, 291–304 (1969)CrossRefGoogle Scholar
  27. 27.
    Y. Liu, W.P. Arnott, J. Hallett: “Anomalous diffraction theory for arbitrarily oriented finite circular cylinders and comparison with exact t-matrix results”, Appl. Opt. 37(21), 5019–5030 (1998)CrossRefGoogle Scholar
  28. 28.
    S. Asano, M. Sato: “Light scattering by randomly oriented spheroidal particles”, Appl. Opt. 19(6), 962–974 (1980)Google Scholar
  29. 29.
    A. Maslowska, P.J. Flatau, G.L. Stephens: “On the validity of the anomalous diffraction theory to light scattering by cubes”, Opt. Comm. 107, 35–40 (1994)CrossRefGoogle Scholar
  30. 30.
    S.K. Sharma: “On the validity of the anomalous diffraction approximation”, J. Mod. Opt. 39, 2355–2361 (1992)CrossRefGoogle Scholar
  31. 31.
    S.K. Sharma: “Light scattering and absorption characteristics of optically soft particles”, in Light scattering reviews 1: Single and multiple light scattering (Springer-Praxis, Chichester, UK, 2006), pp. 13–123Google Scholar
  32. 32.
    D.S. Jones: “Approximate methods in high-frequency scattering”, Proc. R. Soc. London Ser. A 239, 338–348 (1957)Google Scholar
  33. 33.
    D.S. Jones: “High-frequency scattering of electromagnetic waves”, Proc. R. Soc. London Ser. A 240, 206–213 (1957)Google Scholar
  34. 34.
    H.M. Nussenzveig, W.J. Wiscombe: “Efficiency factors in mie scattering”, Phys. Rev. Lett. 45(18), 1490–1494 (1980)CrossRefGoogle Scholar
  35. 35.
    H.M. Nussenzveig, W.J. Wiscombe: “Diffraction as tunneling”, Phys. Rev. Lett. 59(15), 1667–1670 (1987)CrossRefGoogle Scholar
  36. 36.
    H.M. Nussenzveig: “Uniform approximation in scattering by spheres”, J. Phys. A 21, 81–109 (1988)CrossRefGoogle Scholar
  37. 37.
    D. Mitchell: “Parameterization of the mie extinction and absorption coefficients for water clouds”, J. Atmos. Sci. 57, 1311–1326 (2000)CrossRefGoogle Scholar
  38. 38.
    J.Q. Zhao, Y.Q. Hu: “Bridging technique for calculating the extinction efficiency of arbitrary shaped particles”, Appl. Opt. 42, 4937–4945 (2003)CrossRefGoogle Scholar
  39. 39.
    P. Yang, Z. Zhang, B. Baum, H.L. Huang, Y. Hu: “A new look at anomalous diffraction theory (ADT): Algorithm in cumulative projected-area distribution domain and modified ADT”, JQSRT 89, 421–442 (2004)Google Scholar
  40. 40.
    M. Xu, M. Lax, R.R. Alfano: “Light anomalous diffraction using geometrical path statistics of rays and gaussian ray approximation”, Opt. Lett 28, 179–181 (2003)CrossRefGoogle Scholar
  41. 41.
    P. Latimer: “Light scattering by ellipsoids”, J. Colloid Interface Sci. 53, 102–109 (1975)CrossRefGoogle Scholar
  42. 42.
    D.A. Cross, P. Latimer: “General solutions for the extinction and absorption efficiencies of arbitrarily oriented cylinder by Anomalous-Diffraction methods”, J. Opt. Soc. Am. 60(7), 904–907 (1970)Google Scholar
  43. 43.
    P. Chýlek, J.D. Klett: “Extinction cross sections of nonspherical particles in the anomalous diffraction approximation”, J. Opt. Soc. Am. A 8, 274–281 (1991)Google Scholar
  44. 44.
    M. Xu: “Light extinction and absorption by arbitrarily oriented finite circular cylinders using geometrical path statistics of rays”, Appl. Opt. 42, 6710–6723 (2003)CrossRefGoogle Scholar
  45. 45.
    P. Chýlek, J. Li: “Light scattering by small particles in a intermediate region”, Opt. Comm. 117, 389–394 (1995)CrossRefGoogle Scholar
  46. 46.
    A. Katz, A. Alimova, M. Xu, E. Rudolph, M. Shah, H. Savage, R. Rosen, S.A. McCormick, R.R. Alfano: “Bacteria size determination by elastic light scattering”, IEEE JSTQE 9, 277–287 (2003)Google Scholar
  47. 47.
    J.F. Hansen, L.D. Travis: “Light scattering in planetary atmospheres”, Space Sci. Rev. 16, 527–610 (1974)CrossRefGoogle Scholar
  48. 48.
    M.G. Kendall: Kendall’s advanced theory of statistics (Oxford University Press, New York, 1999)Google Scholar
  49. 49.
    L.E. Paramonov: “On optical equivalence of randomly oriented ellipsoidal and polydisperse spherical particles: the extinction, scattering and absorption cross sections”, Opt. Spektr. 77, 660–663 (1994)Google Scholar
  50. 50.
    A.N. Tikhonov, A.V. Groncharsky (eds): Ill-posed problems in the natural sciences (MIR, Moscow, 1987)Google Scholar
  51. 51.
    S. Twomey: “On the numerical solution of Fredholm integral equations of the first kind by the inversion of the linear system produced by quadrature”, J. Assoc. Comput. Mach. 10, 95–109 (1963)Google Scholar
  52. 52.
    K.S. Shifrin: Physical Optics of Ocean Water (American Institute of Physics, New York, 1988)Google Scholar
  53. 53.
    S.Y. Shchyogolev: “Inverse problems of spectroturbidmetry of biological disperse systems: an overview”, J. Biomed. Opt. 4, 490–502 (1999)CrossRefGoogle Scholar
  54. 54.
    X. Li, Z. Chen, J. Gong, A. Taflove, V. Backman: “Analytical techniques for addressing forward and inverse problems of light scattering by irregularly shaped particles.”, Opt. Lett. 29(11), 1239–1241 (2004)CrossRefGoogle Scholar
  55. 55.
    M.T. Madigan, J.M. Martinko, J. Parker: Brock Biology of Microorganisms, 10th edn (Prentice Hall, New Jersey, 2003)Google Scholar
  56. 56.
    M. Jonasz, G. Fournier, D. Stramski: “Photometric immersion refractometry: a method for determining the refractive index of marine microbial particles from beam attenuation”, Applied Optics 36(18), 4214–4225 (1997)CrossRefGoogle Scholar
  57. 57.
    A. Katz, A. Alimova, M. Xu, P. Gottlieb, E. Rudolph, J.C. Steiner, R.R. Alfano: “In situ determination of refractive index and size of bacillus spores by light transmission”, Opt. Lett. 30(6), 589–591 (2005)CrossRefGoogle Scholar
  58. 58.
    P.J. Wyatt: “Differential light scattering: a physical method for identifying living bacterial cells”, Applied Optics 7(10), 1879–1896 (1968)Google Scholar
  59. 59.
    P. Latimer: “Light scattering and absorption as methods of studying cell population parameters”, Ann. Rev. Biophys. Bioeng. 11, 129–150 (1982)CrossRefGoogle Scholar
  60. 60.
    S.E. Harding: “Applications of light scattering in microbiology”, Biotechnol. Appl. Biochem. 8(6), 489–509. (1986)Google Scholar
  61. 61.
    P.J. Wyatt: “Identification of bacteria by differential light scattering”, Nature 221(5187), 1257–1258 (1969)CrossRefGoogle Scholar
  62. 62.
    R.M. Berkman, P.J. Wyatt: “Differential light scattering measurements of heattreated bacteria”, Appl. Microbiol. 20(3), 510–2 (1970)Google Scholar
  63. 63.
    G.J. Wei, V.A. Bloomfield: “Determination of size and charge distributions by combination of quasi-elastic light scattering and band transport”, Anal. Biochem. 101(1), 245–253. (1980)CrossRefGoogle Scholar
  64. 64.
    P.C. Wang, S.H. Chen: “Quasielastic light scattering from migrating chemotactic bands of Escherichia coli. ii. analysis of anisotropic bacterial motions”, Biophys. J. 36(1), 203–219 (1981)Google Scholar
  65. 65.
    P.C. Wang, S.H. Chen: “Quasi-elastic light scattering from migrating chemotactic bands of Escherichia coli. iii. studies of band formation propagation and motility in oxygen and serine substrates”, Biophys. J. 49(6), 1205–1214 (1986)Google Scholar
  66. 66.
    S.H. Chen, F.R. Hallett: “Determination of motile behaviour of prokaryotic and eukaryotic cells by quasi-elastic light scattering”, Q. Rev. Biophys. 15(1), 131–222. (1982)Google Scholar
  67. 67.
    D. Stramski, M. Sedlak, D. Tsai, E.J. Amis, D.A. Kiefer: “Dynamic light scattering by cultures of heterotrophic marine bacteria”, in Ocean optics XI, Vol. 1750, 1st edn. (SPIE, San Diego, CA, 1992), pp. 73–85Google Scholar
  68. 68.
    L.A. De Pieri, I.K. Ludlow, W.M. Waites: “The application of laser diffractometry to study the water content of spores of Bacillus sphaericus with different heat resistances”, J. Appl. Bacteriol. 74(5), 578–582 (1993)Google Scholar
  69. 69.
    J. Murray, D.W. Hukins, P. Evans: “Application of mie theory and cubic splines to the representation of light scattering patterns from bacteria in the logarithmic growth phase”, Phys Med Biol 24(2), 408–15 (1979)CrossRefGoogle Scholar
  70. 70.
    B.V. Bronk, W.P. Van de Merwe, M. Stanley: “In vivo measure of average bacterial cell size from a polarized light scattering function”, Cytometry 13(2), 155–162 (1992)CrossRefGoogle Scholar
  71. 71.
    B.V. Bronk, S.D. Druger, J. Czege, W.P. Van de Merwe: “Measuring diameters of rod-shaped bacteria in vivo with polarized light scattering”, Biophys. J. 69(3), 1170–1177 (1995)Google Scholar
  72. 72.
    A. Diaspro, G. Radicchi, C. Nicolini: “Polarized light scattering: a biophysical method for studying bacterial cells”, IEEE Trans. Biomed. Eng. 42(10), 1038–1043 (1995)CrossRefGoogle Scholar
  73. 73.
    W.S. Bickel, M.E. Stafford: “Polarized scattered light as a probe for structure and change in bioparticles”, in Ultrasensitive biochemical diagnostics, Vol. 2680, 1st edn. (SPIE, San Jose, CA, 1996), pp. 4–15Google Scholar
  74. 74.
    W.P. Van de Merwe, Z.Z. Li, B.V. Bronk, J. Czege: “Polarized light scattering for rapid observation of bacterial size changes”, Biophys. J. 73(1), 500–506 (1997)Google Scholar
  75. 75.
    A. Katz, A. Alimova, M. Xu, E. Rudolph, M. Shah, H.E. Savage, R. Rosen, S.A. McCormick, R.R. Alfano: “Bacteria size determination by elastic light scattering”, IEEE Journal of Selected Topics in Quantum Electronics 9(2), 277–287 (2003)CrossRefGoogle Scholar
  76. 76.
    B. Bayraktar, P.P. Banada, E.D. Hirleman, A.K. Bhunia, J.P. Robinson, B. Rajwa: “Feature extraction from light-scatter patterns of listeria colonies for identification and classification”, J. Biomed. Opt. 11(3), 34006 (2006)CrossRefGoogle Scholar
  77. 77.
    C.E. Alupoaei, L.H. Garcia-Rubio: “Growth behavior of microorganisms using uv-vis spectroscopy: Escherichia coli”, Biotechnol. Bioeng. 86(2), 163–167 (2004)CrossRefGoogle Scholar
  78. 78.
    C.E. Alupoaei, J.A. Olivares, L.H. Garcia-Rubio: “Quantitative spectroscopy analysis of prokaryotic cells: vegetative cells and spores”, Biosens. Bioelectron. 19(8), 893–903 (2004)CrossRefGoogle Scholar
  79. 79.
    J.P. Boon, R. Nossal, S.H. Chien: “Light-scattering spectrum due to wiggling motions of bacteria”, Biophys. J. 14(11), 847–864 (1974)CrossRefGoogle Scholar
  80. 80.
    A. Katz, A. Alimova, M. Xu, E. Rudolph, P. Gottlieb, J.C. Steiner, R.R. Alfano: “Refractive index changes during germination of Bacillus subtilis spores”, in Advanced Biomedical and Clinical Diagnostic Systems III Vol. 5692, 1st edn (SPIE, San Jose, CA, 2005), pp. 326–329Google Scholar
  81. 81.
    S.J. Foster, K. Johnstone: “The trigger mechanism of bacterial spore germination”, in Regulation of procaryotic development. Structural and functional analysis of bacterial sporulation and germination., ed. by I. Smith, R.A. Slepecky, P. Setlow (American society for microbiology, Washington, DC, 1989), pp. 89–Google Scholar
  82. 82.
    A. Driks: “Bacillus subtilis spore coat”, Microbiol. Mol. Biol. Rev. 63(1), 1–20 (1999)Google Scholar

Copyright information

© Praxis Publishing Ltd, Chichester, UK 2008

Authors and Affiliations

  • Min Xu
    • 1
  • A. Katz
    • 2
  1. 1.Department of PhysicsFairfield UniversityFairfieldUSA
  2. 2.Institute for Ultrafast Spectroscopy and Laser Department of PhysicsCity College of New YorkNew YorkUSA

Personalised recommendations