Approximating Minimum Manhattan Networks

  • Joachim Gudmundsson
  • Christos Levcopoulos
  • Giri Narasimhan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1671)

Abstract

Given a set S of n points in the plane, we define a Manhattan Network on S as a rectilinear network G with the property that for every pair of points in S, the network G contains the shortest rectilinear path between them. A Minimum Manhattan Network on S is a Manhattan network of minimum possible length. A Manhattan network can be thought of as a graph G = (V; E), where the vertex set V corresponds to points from S and a set of steiner points S′, and the edges in E correspond to horizontal or vertical line segments connecting points in SS′. A Manhattan network can also be thought of as a 1-spanner (for the L 1-metric) for the points in S.

Let R be an algorithm that produces a rectangulation of a staircase polygon in time R(n) of weight at most r times the optimal. We design an O(n log n + R(n)) time algorithm which, given a set S of n points in the plane, produces a Manhattan network on S with total weight at most 4r times that of a minimum Manhattan network. Using known rectangulation algorithms, this gives us an O(n 3)-time algorithm with approximation factor four, and an O(n log n)-time algorithm with approximation factor eight.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Althöfer, I., Das, G., Dobkin, D.P., Joseph, D., Soares, J.: On sparse spanners of weighted graphs. Discrete Comput. Geom. 9, 81–100 (1993)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Arora, S., Grigni, M., Karger, D., Klein, P., Woloszyn, A.: A polynomial-time approximation scheme for weighted planar graph TSP. In: Proc. 9th ACM-SIAM Sympos. Discrete Algorithms, pp. 33–41 (1998)Google Scholar
  3. 3.
    Arya, S., Das, G., Mount, D.M., Salowe, J.S., Smid, M.: Euclidean spanners: short, thin, and lanky. In: Proc. 27th Annu. ACM Sympos. Theory Comput., pp. 489–498 (1995)Google Scholar
  4. 4.
    Chandra, B., Das, G., Narasimhan, G., Soares, J.: New sparseness results on graph spanners. Internat. J. Comput. Geom. Appl. 5, 125–144 (1995)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Das, G., Narasimhan, G.: A fast algorithm for constructing sparse Euclidean spanners. Internat. J. Comput. Geom. Appl. 7, 297–315 (1997)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Levcopoulos, C., Narasimhan, G., Smid, M.: Efficient algorithms for constructing fault-tolerant geometric spanners. In: Proc. 30th Annu. ACM Sympos. Theory Comput., pp. 186–195 (1998)Google Scholar
  7. 7.
    Levcopoulos, C., Östlin, A.: Linear-time heuristics for minimum weight rectangulation. In: Karlsson, R., Lingas, A. (eds.) SWAT 1996. LNCS, vol. 1097, pp. 271–283. Springer, Heidelberg (1996)Google Scholar
  8. 8.
    Lingas, A., Pinter, R., Rivest, R., Shamir, A.: Minimum edge length partitioning of rectilinear polygons. In: Proc. 20th Allerton Conf. Commun. Control Comput., pp. 53–63 (1982)Google Scholar
  9. 9.
    Rao, S.B., Smith, W.D.: Approximating geometrical graphs via ”spanners” and ”banyans”. In: Proceedings of the 30th Annual ACM Symposium on Theory of Computing (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Joachim Gudmundsson
    • 1
  • Christos Levcopoulos
    • 1
  • Giri Narasimhan
    • 2
  1. 1.Dept. of Computer ScienceLund UniversityLundSweden
  2. 2.Dept. of Mathematical SciencesThe Univ. of MemphisMemphisUSA

Personalised recommendations