Approximating Minimum Manhattan Networks

  • Joachim Gudmundsson
  • Christos Levcopoulos
  • Giri Narasimhan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1671)

Abstract

Given a set S of n points in the plane, we define a Manhattan Network on S as a rectilinear network G with the property that for every pair of points in S, the network G contains the shortest rectilinear path between them. A Minimum Manhattan Network on S is a Manhattan network of minimum possible length. A Manhattan network can be thought of as a graph G = (V; E), where the vertex set V corresponds to points from S and a set of steiner points S′, and the edges in E correspond to horizontal or vertical line segments connecting points in SS′. A Manhattan network can also be thought of as a 1-spanner (for the L1-metric) for the points in S.

Let R be an algorithm that produces a rectangulation of a staircase polygon in time R(n) of weight at most r times the optimal. We design an O(n log n + R(n)) time algorithm which, given a set S of n points in the plane, produces a Manhattan network on S with total weight at most 4r times that of a minimum Manhattan network. Using known rectangulation algorithms, this gives us an O(n3)-time algorithm with approximation factor four, and an O(n log n)-time algorithm with approximation factor eight.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Joachim Gudmundsson
    • 1
  • Christos Levcopoulos
    • 1
  • Giri Narasimhan
    • 2
  1. 1.Dept. of Computer ScienceLund UniversityLundSweden
  2. 2.Dept. of Mathematical SciencesThe Univ. of MemphisMemphisUSA

Personalised recommendations