Advertisement

Oriented atoms in a variable magnetic field

  • Ettore Majorana
  • Massimo Inguscio

Summary

The author calculates the probability of non-adiabatic processes when an oriented atomic beam passes close to a point where the magnetic field vanishes.

Keywords

Scientific Paper Magnetic Trap Variable Magnetic Field Angular Momentum Component Pulse Atom Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    T. E. Phipps and O. Stern “Z. Physik”, 73, 185 (1932).CrossRefADSGoogle Scholar
  2. (2).
    P. Güttinger, “Z. Physik”, 73, 169 (1932).CrossRefADSGoogle Scholar
  3. (3).
    See, e.g., Whittaker and Watson, Modern Analysis, IV ed., p. 259.Google Scholar

References

  1. (1).
    E. Amaldi, op. cit. and the English translation Ettore Majorana, man and scientist in Strong and Weak Interactions, Present Problems, International School of Physics Ettore Majorana, Erice, June 19th–July 4th 1966, edited by Zichichi A. (Academic Press, New York and London) 1966.Google Scholar
  2. (2).
    R. Frisch and E. Segrè, “Ricerche sulla quantizzazione spaziale”, Nuovo Cimento 10 (1933) 78; “Über die Einstellung der Richtungsquantelung”, Z. Phys., 80 (1933) 610.CrossRefGoogle Scholar
  3. (3).
    F. Bloch and I. I. Rabi, “Atoms in Variable Magnetic Fields”, Rev. Mod. Phys. 17 (1945) 237.CrossRefADSGoogle Scholar
  4. (4).
    L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-relativistic Theory (Nauka, Moscow) 1974; (Pergamon Press, Oxford) 1977.Google Scholar
  5. (5).
    F. Di Giacomo and E. E. Nikitin, “The Majorana formula and the Landau-Zener-Stuckelberg treatment of the avoided crossing problem”, Phys. Usp. 48 (2005) 515.CrossRefADSGoogle Scholar
  6. (6).
    J. Brossel and F. Bitter, “A New Double Resonance Method for Investigating Atomic Energy Levels. Application to Hg 3 P 1”, Phys. Rev. 86 (1952) 308; see also: J. Brossel, Thesis, Faculté des Sciences de l’Université de Paris (1952).CrossRefADSGoogle Scholar
  7. (7).
    C. Cohen-Tannoudji, lessons available online at http://www.phys.ens.fr/cours/college-de-france/Google Scholar
  8. (8).
    E. A. Cornell and C. E. Wieman, “Bose-Einstein condensation in a dilute gas”, Rev. Mod. Phys. 74 (2002) 875.CrossRefADSGoogle Scholar
  9. (9).
    W. Ketterle, “When atoms behave as waves”, Rev. Mod. Phys. 74 (2002) 1173.CrossRefGoogle Scholar
  10. (10).
    Courtesy of F. S. Cataliotti, Università di Catania (2006).Google Scholar
  11. (11).
    X. Ma et al., “Population oscillation of the multicomponent spinor BEC induced by nonadiabatic transitions”, Phys. Rev. A 73 (2006) 013624.CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica 2006

Authors and Affiliations

  • Ettore Majorana
  • Massimo Inguscio
    • 1
  1. 1.Università di FirenzeItaly

Personalised recommendations