Advertisement

ECC: Do We Need to Count?

  • Jean-Sébastien Coron
  • Helena Handschuh
  • David Naccache
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1716)

Abstract

A prohibitive barrier faced by elliptic curve users is the difficulty of computing the curves’ cardinalities. Despite recent theoretical breakthroughs, point counting still remains very cumbersome and intensively time consuming.

In this paper we show that point counting can be avoided at the cost of a protocol slow-down. This slow-down factor is quite important (typically ≅) 500) but proves that the existence of secure elliptic-curve signatures is not necessarily conditioned by point counting.

Keywords

Elliptic curve point counting signature 

References

  1. 1.
    de Bruijn, N.: On the number of positive integers ≤ x and free of prime factos ≥ y. Indagationes Mathematicae 13, 50–60 (1951)Google Scholar
  2. 2.
    de Bruijn, N.: On the number of positive integers ≤ x and free of prime factos ≥ y, II. Indagationes Mathematicae 28, 236–247 (1966)Google Scholar
  3. 3.
    Couveignes, J.-M., Dewaghe, L., Morain, F.: Isogeny cycles and the Schoof-Elkies-Atkin algorithm, Rapport de recherche LIX/RR/96/03, Laboratoire d’informatique de l’École Polytechnique (1996)Google Scholar
  4. 4.
    Couveignes, J.-M., Morain, F.: Schoof’s algorithm and isogeny cycles. In: Huang, M.-D.A., Adleman, L.M. (eds.) ANTS 1994. LNCS, vol. 877, pp. 43–58. Springer, Heidelberg (1994)Google Scholar
  5. 5.
    Dickman, K.: On the frequency of numbers containing prime factors of a certain relative magnitude. Arkiv för matematik, astronomi och fysik 22A(10), 1–14 (1930)Google Scholar
  6. 6.
    Dixon, J.: Asymptotically fast factorization of integers. Mathematics of computation 36(153), 255–260 (1981)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Halberstam, H.: On integers whose prime factors are small. Proceedings of the London mathematical society 3(21), 102–107 (1970)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Howe, E.: On the group orders of elliptic curves over finite fields. Compositio mathematica 85, 229–247 (1993)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Koblitz, N.: Primality of the number of points on an elliptic curve over a finite field. Pacific Journal of Mathematics 131, 157–165 (1988)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Kunihiro, N., Koyama, K.: Equivalence of counting the number of points on elliptic curve over the ring Zn and factoring n. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 47–58. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  11. 11.
    Lay, G., Zimmer, H.: Constructing elliptic curves with given group order over large finite fields. In: Huang, M.-D.A., Adleman, L.M. (eds.) ANTS 1994. LNCS, vol. 877, Springer, Heidelberg (1994)Google Scholar
  12. 12.
    Lenstra Jr., H.: Factoring integers with elliptic curves. Ann. math. 126, 649–673 (1987)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Lercier, R.: Computing isogenies in GF(2n). In: Cohen, H. (ed.) ANTS 1996. LNCS, vol. 1122, pp. 197–212. Springer, Heidelberg (1996)Google Scholar
  14. 14.
    Lercier, R., Morain, F.: Counting the number of points on elliptic curves over finite fields: strategies and performances. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 79–94. Springer, Heidelberg (1995)Google Scholar
  15. 15.
    Lercier, R., Morain, F.: Counting the number of points on elliptic curves over F\(_{p^n}\) using Couveigne’s algorithm, Rapport de recherche LIX/RR/95/09, Laboratoire d’informatique de l’École Polytechnique (1995)Google Scholar
  16. 16.
    Menezes, A.: Elliptic curve public key cryptosystems, p. 25. Kluwer academic publishers, Dordrecht (1983)Google Scholar
  17. 17.
    Menezes, A., Vanstone, S., Zuccharato, R.: Counting points on elliptic curves over F\(_{2^m}\). Mathematics of computation 60(201), 407–420 (1993)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Pohlig, S., Hellman, M.: An improved algorithm for computing logarithms over GF(p) and its cryptographic significance. IEEE Transactions on Information Theory 24, 106–110 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Poupard, G., Stern, J.: A practical and provably secure design for on the fly authentication and signature generation. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 422–436. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  20. 20.
    Schoof, R.: Elliptic curves over finite fields and the computation of square roots mod p. Mathematics of computation 44, 483–494 (1985)zbMATHMathSciNetGoogle Scholar
  21. 21.
    Schoof, R.: Counting points on elliptic curves over finite fields. CACM 21(2), 120–126 (1978)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Jean-Sébastien Coron
    • 1
    • 2
  • Helena Handschuh
    • 2
    • 3
  • David Naccache
    • 2
  1. 1.École Normale SupérieureParisFrance
  2. 2.Gemplus Card InternationalIssy-les-MoulineauxFrance
  3. 3.École Nationale Supérieure des TélécommunicationsParisFrance

Personalised recommendations