Introduction to Neonatal Facial Pain Detection Using Common and Advanced Face Classification Techniques

  • Sheryl Brahnam
  • Loris Nanni
  • Randall Sexton
Part of the Studies in Computational Intelligence book series (SCI, volume 48)


Principal Component Analysis Facial Expression Face Recognition Linear Discriminant Analysis Face Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stevens B, Johnston C, Gibbins S (2000) Pain assessment in neonates. In: Anand KJS, Stevens BJ, McGrath PJ (eds) Pain in neonates: 2nd revised and enlarged edition. Elsevier, New York, pp 101-134.Google Scholar
  2. 2.
    Wong D, Baker C (1988) Pain in children: Comparison of assessment scales. Pediatr Nurs 14(1): 9-17.Google Scholar
  3. 3.
    Grunau RE (2000) Long-term consequences of pain in human neonates. In: Anand KJS, Stevens BJ, McGrath PJ (eds) Pain in neonates: 2nd revised and enlarged edition. Elsevier, New York, pp 55-76.Google Scholar
  4. 4.
    Coffman S, Alvarez Y, Pyngolil M, Petit R, Hall C, Smyth M (1997) Nursing assessment and management of pain in critically ill children. Heart Lung 26(3): 221-228.CrossRefGoogle Scholar
  5. 5.
    Van Cleve L, Johnson L, Pothier P (1996) Pain responses of hospitalized infants and children to venipuncture and intravenous cannulation. J Pediatr Nurs 11(3): 161-168.CrossRefGoogle Scholar
  6. 6.
    McGrath PA (1989) Pain in children: Nature, assessment, and treatment. Guildford Press, New YorkGoogle Scholar
  7. 7.
    Craig KD (1998) The facial display of pain in infants and children. In: Finley GA, McGrath PJ (eds) Measurement of pain in infants and children. IASP Press, Seattle, pp 103-121Google Scholar
  8. 8.
    Grunau RE, Grunau RVE, Craig KD (1987) Pain expression in neonates: Facial action and cry. Pain 28(3): 395-410CrossRefGoogle Scholar
  9. 9.
    Prkachin KM, Solomon P, Hwang T, Mercer SR (2001) Does experience influ-ence judgments of pain behaviour? Evidence from relatives of pain patients and therapists. Pain Res Manag 6(2): 105-112.Google Scholar
  10. 10.
    McDowell I, Newall C (1996) Measuring health: A guide to rating scales and questionnaires. Oxford University Press, Oxford.Google Scholar
  11. 11.
    Xavier Balda R, Guinsburg R, de Almeida MFB, de Araujo CP, Miyoshi MH, Kopelman BI (2000) The recognition of facial expression of pain in full-term newborns by parents and health professionals. Arch Pediatr Adolesc Med 154 (10): 1009-1016.Google Scholar
  12. 12.
    akansson S (1999) Heel lancing in term new-born infants: An evaluation of pain by frequency domain analysis of heart rate variability. Pain 80(1-2): 143-148CrossRefGoogle Scholar
  13. 13.
    Petroni M, Malowany A, Johnston C, Stevens B (1995) Identification of pain from infant cry vocalizations using artificial neural networks (ANNS). Int Soc Opt Eng 2492: 729-738.Google Scholar
  14. 14.
    Brahnam S, Chuang C-F, Sexton R, Shih FY, Slack MR (in press) Machine assessment of neonatal facial expressions of acute pain. Decis Support Syst.Google Scholar
  15. 15.
    Brahnam S, Chuang C-F, Shih FY, Slack MR (2006) Machine recognition and representation of neonate facial displays of acute pain. Artif Intell Med 36(3): 211-222.CrossRefGoogle Scholar
  16. 16.
    Zhao W, Chellappa R, Phillips PJ, Rosenfeld A (2000) Face recognition: A literature survey. ACM Comput Surv 35(4): 399-458.CrossRefGoogle Scholar
  17. 17.
    Moghaddam B, Yang M-H (2002) Learning gender with support faces. IEEE Trans PAMI 24(5): 306-311Google Scholar
  18. 18.
    O’Toole AJ, Abdi H, Deffenbacher KA, Bartlett JC (1991) Classifying faces by race and sex using an autoassociative memory trained for recognition. In: 13th annual conference on cognitive science. Hillsdale, NJ, pp 847-851.Google Scholar
  19. 19.
    O’Toole AJ, Deffenbacher KA (1997) The perception of face gender: The role of stimulus structure in recognition and classification. Mem Cog 26: 146-160.Google Scholar
  20. 20.
    Ekman P, Huang TS, Sejnowski TJ, Hager JC, Golomb B (1992) Final report to NSF of the planning workshop on facial expression understanding. Available at
  21. 21.
    Gunaratne P, Sato Y (2003) Estimation of asymmetry in facial actions for the analysis of motion dysfunction due to paralysis. Int J Image Graph 3(4): 639-652.CrossRefGoogle Scholar
  22. 22.
    Lanitis A, Taylor CJ, Cootes TF (1997) Automatic interpretation and coding of face images using flexible models. IEEE Trans PAMI 19(7): 743-756.Google Scholar
  23. 23.
    Burton AM, Bruce V, Dench N (1993) What's the difference between men and women? Evidence from facial measurement. Perception 22(2): 153-176.CrossRefGoogle Scholar
  24. 24.
    Valentin D, Abdi H, O,Toole AJ, Cottrell GW (1994) Connectionist models of face processing: A survey. Pattern Recognit 27(9): 1209-1230.CrossRefGoogle Scholar
  25. 25.
    Brunelli R, Poggio T (1993) Face recognition: Features versus templates. IEEE Trans PAMI 15(10): 1042-1052.Google Scholar
  26. 26.
    Narendra PM, Fukunaga K (1977) A branch and bound algorithm for feature subset selection. IEEE Trans Comput 26: 917-922.zbMATHCrossRefGoogle Scholar
  27. 27.
    Whitney A (1971) A direct method of nonparametric measurement selection. IEEE Trans Comput 20: 1100-1103zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Pudil P, Novovicova J, Kittler J (1994) Floating search methods in feature selection. Pattern Recognit Lett 5(11): 1119-1125.CrossRefGoogle Scholar
  29. 29.
    Egmont-Petersen M, Dassen WRM, Reiber JHC (1999) Sequential selection of discrete features for neural networks: A bayesian approach to building a cascade. Pattern Recognit Lett 20(11-13): 1439-1448.CrossRefGoogle Scholar
  30. 30.
    Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3: 1157-1182zbMATHCrossRefGoogle Scholar
  31. 31.
    Kudo M, Sklansky J (2000) Comparison of algorithms that select features for pattern classifiers. Pattern Recognit 33(1): 25-41CrossRefGoogle Scholar
  32. 32.
    Devijver PA, Kittler J (1982) Pattern recognition: A statistical approach. Prentice Hall, Englewood CliffszbMATHGoogle Scholar
  33. 33.
    Jain A, Zongker D (1997) Feature selection: Evaluation, application, and small sample performance. IEEE Trans PAMI 19(2): 153-158Google Scholar
  34. 34.
    Swets DL, Weng J (1996) Using discriminant eigenfeatures for image retrieval. IEEE Trans PAMI 18(8): 831-837Google Scholar
  35. 35.
    Turk MA, Pentland AP (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1): 71-86CrossRefGoogle Scholar
  36. 36.
    Turk MA, Pentland AP (1991) Face recognition using eigenfaces. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Silver Spring, MD, pp 586-591.Google Scholar
  37. 37.
    Jain A, Huang J (2004) Integrating independent components and linear dis-criminant analysis for gender classification. In: The sixth IEEE international conference on automatic face and gesture recognition, pp 159-163.Google Scholar
  38. 38.
    Valentin D, Abdi H, Edelman BE, O’Toole AJ (1997) Principal component and neural network analyses of face images: What can be generalized in gender classification? J Math Psychol 41(4): 398-413.zbMATHCrossRefGoogle Scholar
  39. 39.
    Lu X, Jain AK (2004) Ethnicity identification from face images. In: SPIE: Bio-metric Technology for Human Identification, pp 114-123.Google Scholar
  40. 40.
    Cottrell GW, Metcalfe J (1991) Empath: Face, emotion, and gender recognition using holons. In: Touretzky D (ed) Advances in neural information processing systems. Morgan & Kaufman, San Mateo, CA, pp 564-571.Google Scholar
  41. 41.
    Martinez AM, Benavente R (1998) The AR face database. CVC technical report #24. Available at∼aleix/aleix face DB.html.
  42. 42.
    Padgett C, Cottrell GW (1998) A simple neural network models categorical perception of facial expressions. In: Proceedings of the 20th annual cognitive science conference. Madison, WI, pp 806-807.Google Scholar
  43. 43.
    Edelman BE, Valentin D, Abdi H (1998) Sex classification of face areas: How well can a linear neural network predict human performance. J Biol Syst 6(3): 241-264.CrossRefGoogle Scholar
  44. 44.
    Cottrell GW, Fleming MK (1990) Face recognition using unsupervised feature extraction. In: International conference on neural networks, pp 322-325.Google Scholar
  45. 45.
    Kohonen T (1977) Associative memory: A system theoretic approach. Springer, Berlin Heidelberg New York.Google Scholar
  46. 46.
    Valentin D, Abdi H, O’Toole AJ (1994) Categorization and identification of human face images by neural networks: A review of the linear autoassociative and principal component approaches. J Biol Syst 2(3): 413-429.CrossRefGoogle Scholar
  47. 47.
    Oja E (1992) Principal components, minor components and linear neural net-works. Neural Netw 5: 927-935.CrossRefGoogle Scholar
  48. 48.
    Chellappa R, Wilson CL, Sirohey S (1995) Human and machine recognition of faces: A survey. Proc IEEE 83: 705-740CrossRefGoogle Scholar
  49. 49.
    Lin SH, Kung SY, Lin LJ (1997) Face recognition/detection by probabilistic decision based neural network. IEEE Trans Neural Netw 8(1): 114-132.CrossRefGoogle Scholar
  50. 50.
    Sexton R, Dorsey R, Sikander N (2004) Simultaneous optimization of neural network function and architecture algorithm. Decis Support Syst 36: 283-296.CrossRefGoogle Scholar
  51. 51.
    Sexton RS, Dorsey RE, Johnson JD (1998) Toward a global optimum for neural networks: A comparison of the genetic algorithm and backpropagation. Decis Support Syst 22: 171-185.CrossRefGoogle Scholar
  52. 52.
    Sexton RS, Sriram RS, Etheridge H (2003) Improving decision effectiveness of artificial neural networks - A modified genetic algorithm approach. Decis Sci 34(3): 421-442CrossRefGoogle Scholar
  53. 53.
    Brahnam S, Sexton R, Slack MR (in review) Recognizing neonatial facial expressions of pain using a neural network simultaneous optimization algorithm.Google Scholar
  54. 54.
    Sexton RS, Dorsey RE (2000) Reliable classification using neural networks: A genetic algorithm and backpropagation comparison. Decis Support Syst 30: 11-22.CrossRefGoogle Scholar
  55. 55.
    Heisele B, Ho P, Poggio T (2001) Face recognition with support vector machines: Global versus component-based approach. In: The eighth IEEE international conference on computer vision, Vancouver, pp 688-694.Google Scholar
  56. 56.
    Moghaddam B, Yang M-H (2000) Gender classification with support vector machines. In: The sixth IEEE international conference on automatic face and gesture recognition, pp 306-311.Google Scholar
  57. 57.
    Phillips PJ (1998) Support vector machines applied to face recognition. Adv Neural Inf Process Syst 11: 803-809Google Scholar
  58. 58.
    Guo G, Li SZ, Chan KL (2001) Support vector machines for face recognition. Image Vis Comput 19: 631-638CrossRefGoogle Scholar
  59. 59.
    Ahmed N, Natarajan T, Rao KR (1972) On image processing and a discrete cosine transform. IEEE Trans Comp 23(1): 90-93.CrossRefMathSciNetGoogle Scholar
  60. 60.
    Pan Z, Rust A, Bolouri H (2000) Image redundancy reduction for neural network classification using discrete cosine transforms. In: International joint conference on neural networks. Como, Italy, pp 149-154.Google Scholar
  61. 61.
    Kohir VV, Desai UB (2000) Face recognition. IEEE Int Symp Circ Syst 5: 305-308Google Scholar
  62. 62.
    Kosugi M (1995) Human-face search and location in a scene by multi-pyramid architecture for personal identification. Syst Comput Jpn 26(6): 27-38.CrossRefGoogle Scholar
  63. 63.
    Sirovich L, Kirby M (1987) Low dimensional procedure for the characterization of human faces. J Opt Soc Am 4(3): 519-524.CrossRefGoogle Scholar
  64. 64.
    Belhumeur P, Hespanha J, Kriegman D (1997) Eigenfaces vs. fisherfaces: Recog-nition using class specific linear projection. IEEE Trans PAMI 19(7): 711-720.Google Scholar
  65. 65.
    Martinez AM, Kak AC (2001) Pca versus ldas. IEEE Trans PAMI 23(2): 228-233.Google Scholar
  66. 66.
    Vapnik VN (1995) The nature of statistical learning theory. Springer, Berlin Heidelberg New York.zbMATHGoogle Scholar
  67. 67.
    Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press.Google Scholar
  68. 68.
    The MathWorks (2000) Using matlab: The language of technical computing. The Mathworks, Inc., Natick, MA.Google Scholar
  69. 69.
    van der Heijden F, Duin RPW, de Ridder D, Tax DMJ (2004) Classification, parameter estimation, and state estimation: An engineering approach using mat-lab. Wiley, Chichester.CrossRefGoogle Scholar
  70. 70.
    Grunau RVE, Johnston CC, Craig KD (1990) Neonatal facial and cry responses to invasive and non-invasive procedure. Pain 42(3): 295-305.CrossRefGoogle Scholar
  71. 71.
    Warnock F, Sandrin D (2004) Comprehensive description of newborn distress behavior in response to acute pain (newborn male circumcision). Pain 107(3): 242-255.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Sheryl Brahnam
    • 1
  • Loris Nanni
    • 2
  • Randall Sexton
    • 3
  1. 1.Computer Information SystemsMissouri State UniversityUSA
  2. 2.DEIS, IEIIT – CNR Università di BolognaBolognaItaly
  3. 3.Computer Information SystemsMissouri State UniversitySpringfieldUSA

Personalised recommendations