In old paleontology textbooks, trace fossils were treated as an appendix together with “Problematica”. Although this situation has changed, the mesalliance persists. As trace fossils are themselves sedimentary structures, their distinction from non-biogenic structures is more difficult than in body fossils. Therefore every practicing ichnologist must be aware of pseudofossils that owe their origin to a variety of physical processes. The last edition of the Treatise on Invertebrate Paleontology, part W, lists 245 ichnogenera and no less than 76 “genera” of pseudofossils (not counting synonyms). Most of the latter come from the Proterozoic for two reasons. (1) When biohistorians work in the Precambrian, they are particularly eager to recognize — and name — anything that could potentially be the earliest documents of animal life. (2) The Precambrian was a world of microbes. In the absence of bioturbation they could form continuous films or biomats at the sea floor. Microbial mats not only produced the laminated buildups called stromatolites; they also reinforced the top layer of otherwise soft sands and muds. Therefore, clastic Precambrian rocks contain a lot of “anactualistic” sedimentary structures that are rare or absent in later deposits. Accordingly, the present chapter has been placed before the one on Precambrian trace fossils. This is not the place to cover all sedimentary structures. They represent a field of their own that, like paleoichnology, still requires more observational and experimental research. Many eye-catching sedimentary structures (such as cross bedding, ripples, or desiccation cracks) would never be mistaken for trace fossils.


Bedding Plane Sedimentary Structure Trace Fossil Tsunami Deposit Tool Mark 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Chapter XII

  1. Bromley RG, Ekdale AA (1984) Trace fossil preservation in flint in the European chalk. J Paleontol 58:298–311 (Preservational analysis of Cretaceous chalk trace fossils, with discussion on diagenetic enhancement)Google Scholar
  2. Häntzschel W (1975) Trace fossils and problematica. In: Teichert C (ed) Treatise on invertebrate paleontology, Part W, Supplement 1. Geological Society of America and Univerity of Kansas, W1–W269 (Contains alphabetical lists of pseudofossils, trace fossils, incertae sedis, and unrecognized and unrecognizable “genera”, some of which have since been recognized)Google Scholar
  3. Jensen S (1997) Trace fossils from the Lower Cambrian Mickwitzia sandstone, south-central Sweden. Fossils and Strata 42:1–111 (Contains section on pseudofossils)Google Scholar
  4. Lebesconte P (1887) Constitution générale du Massif breton comparée à celle du Finisterre. B Soc Geol Fr 14:776–820 (Introduction of “Neantia”)Google Scholar
  5. Seilacher A (1999) Biomat-related lifestyles in the Precambrian. Palaios 14:86–93 (Role of microbial mats in producing physical sedimentary structures)CrossRefGoogle Scholar
  6. Shrock RR (1948) Sequence in layered rocks. McGraw-Hill, New York, 507 p (Chapters 4 and 5 contain references and illustrations relevant to this chapter)Google Scholar
  7. Wu X (1985) Trace fossils and their significance in non-marine turbidite deposits of Mesozoic coal and oil bearing sequences from Yima-Jiyuan Basin, western Henan, China. Acta Sediment Sin 3:23–31 (In Chinese with English abstract) (Original description of “Jiyuanichnus” made by modern scorpions)Google Scholar
  8. Yang S, Zhang J, Yang M (2004) Trace fossils of China. Science Press, Beijing, pp 29–263 (Shuichengichnus. and other pseudofossils)Google Scholar

Plate 56: Trace-like Body Fossils: Xenophyophoria

  1. Fedonkin MA (1985) Paleoichnology of Vendian metazoa. In: Sokolov BS, Ivanovskiy MA (eds) The Vendian system: Historic-geological and palaeontological basis, 1. pp 112–116 (In Russian; English translation, Springer-Verlag 1990) (Interpretation of Palaeopascichnus, Neonereites, Intrites and Yelovichnus as trace fossils)Google Scholar
  2. Glaessner, MF (1984) The dawn of animal life: A biohistorical study. Cambridge University Press, Cambridge, 244 p (Palaeopascichnus interpreted as a grazing trace)Google Scholar
  3. Seilacher A, Grazhdankin D, Legouta A (2003) Ediacaran biota: The dawn of animal life in the shadow of giant protists. Paleontol Res 7:43–54 (Reinterpretation of many Ediacaran trace fossils as body fossils of Xenophyophoria)CrossRefGoogle Scholar
  4. Seilacher A, Buatois LA, Mángano MG (2005) Trace fossils in the Ediacaran-Cambrian transition: Behavioral diversification, ecological turnover and environmental shift. Palaeogeog Palaeoclim Palaeoecol 227:323–356 (Reinterpretation of many Ediacaran trace fossils as body fossils of Xenophyophoria or pseudofossils)CrossRefGoogle Scholar
  5. Tendal OS (1972) A monograph of the Xenophyophoria (Rhizopodea, Protozoa). Galathea Reports 12:7–99 (Review of modern deepsea Xenophyophoria)Google Scholar

Plate 57: Tool Marks

  1. Linck O (1949) Lebens-Spuren aus dem Schilfsandstein (mittl. Keuper km 2) NW-Württembergs und ihre Bedeutung für die Bildungsgeschichte der Stufe. Verein für Vaterländische Naturkunde in Württemberg, Jahreshefte 97–101, 1–100 (Introduction of “Ichnyspica”)Google Scholar
  2. Lucas SGPIT, Lerner AJ (2001) Reappraisal of Oklahomaichnus, a supposed amphibian trackway from the Pennsylvanian of Oklahoma. Ichnos 8:251–253 (Reinterpretation as arthropod undertrack)Google Scholar
  3. Nathorst AG (1881) Om spår af nagra evertebrerade djur m. m. och deras palæontologiska betydelse (Mémoire sur quelques traces d’animaux sans vertèbres etc. et de leur portée paléontologique) Konglinga Svenska Vetenskapsakademien, Handlingar (2) 18 (1880), 1–60 (Swedish), 61–104 (abridged, French) (Eophyton as tool mark)Google Scholar
  4. Osgood RG (1970) Trace fossils of the Cincinnati area. Paleontographica Americana 6:281–444 (See Plate 19: “Chloephycus” and roll mark of tabulate)Google Scholar
  5. Pavoni N (1960) Rollmarken von Fischwirbeln aus den oligozänen Flyschschiefern von Engi-Matt (Kt. Glarus). Eclogae Geol Helv 52: 941–949 (Recognizes Peyer’s Tunicates as rollmarks of fish vertebrae)Google Scholar
  6. Peyer B (1958) Über bisher als Fährten gedeutete problematische Bildungen aus den oligozänen Fischschiefern des Sernftales. Schweizerische Palaeontologische Abhandlungen 4 (1957), 34 p (Roll marks of fish vertebrae interpreted as tunicates)Google Scholar
  7. Sarjeant WAS (1967) Track of a small amphibian from the Pennsylvanian of Oklahoma. Tex J Sci 27:107–112 (Diagnosis of Oklahomaichnus)Google Scholar
  8. Seilacher A (1963) Umlagerung und Rolltransport von Cephalopoden-Gehäusen. Neues Jahrb Geol P M 11:593–615 (Rollmarks of ammonite shells)Google Scholar
  9. Seilacher A (1982) Distinctive features of sandy tempestites. In: Einsele G, Seilacher A (eds) Cyclic and event stratification. Springer-Verlag, Berlin, pp 333–349Google Scholar

Plate 58: Synsedimentary Structures

  1. Bland BH (1984) Arumberia Glaessner and Walter, a review of its potential for correlation in the region of the Precambrian-Cambrian boundary. Geol Mag 121:625–633Google Scholar
  2. Bloos G (1976) Untersuchungen über Bau und Entstehung der feinkörnigen Sandsteine des schwarzen Jura alpha (Hettangium und tiefstes Sinemurium) im schwäbischen Sedimentationsbereich. Arbeiten des Instituts für Geologie und Paläontologie der Universität Stuttgart 71, 270 p (“Kinneyia” and microripples)Google Scholar
  3. Crowell JC (1958) Sole markings of graded graywacke beds: A discussion. J Geol 66(3):333–335CrossRefGoogle Scholar
  4. Hagadorn JW, Bottjer DJ (1997) Wrinkle structures: Microbially mediated sedimentary structures common in subtidal siliciclastic settings at the Proterozoic-Phanerozoic transition. Geology 25:1047–1050 (Discussion of wrinkle marks and elephantskin structures)CrossRefGoogle Scholar
  5. Hagadorn JW, Bottjer DJ (1999) Restriction of a late Neoproterozoic biotope: Suspect-microbial structures and trace fossils at the Vendian-Cambrian transition. Palaios 14:73–85 (Wrinkle marks and elephantskin structures)CrossRefGoogle Scholar
  6. Janicke V (1969) Untersuchungen über den Biotop der Solnhofener Plattenkalke. Mitt Bayer Staatssamml Paläontol Hist Geol 9: 117–181 (Solnhofen elephantskin structures)Google Scholar
  7. Książkiewicz M (1977) Trace fossils in the flysch of the Polish Carpathians. Paleontologia Polonica 36, 208 p (Mop structures held for Lophoctenium. See pl. 5, fig. 9)Google Scholar
  8. Miller SA, Dyer CB (1878a) Contributions to paleontology, no. 1. J Cincinnati Soc Nat Hist 1:24–39 (“Blastophycus”)Google Scholar
  9. Miller SA, Dyer CB (1878b) Contributions to paleontology, no. 2, 11 p, privately published, Cincinnati, Ohio (“Aristophycus”)Google Scholar
  10. Müller AH (1955) Über die Lebensspur Isopodichnus aus dem Oberen Buntsandstein (Unt. Röt) von Göschwitz bei Jena und Abdrücke ihres mutmaßlichen Erzeugers. Geologie 4(5):481–489 (Figured hyporeliefs belong to Lockeia; associated epireliefs of pseudofossil Aristophycus are interpreted as gill impressions)Google Scholar
  11. Osgood RG (1970) Trace fossils of the Cincinnati area. Paleontographica Americana 6:281–444 (Origin of “Blastophycus”)Google Scholar
  12. Pflüger F (1995) Morphodynamik, Aktualismus und Sedimentstrukturen. Neues Jahrb Geol P-A 195:75–83 (Origin of Kinneyia)Google Scholar
  13. Pflüger F (1999) Matground structures and redox facies. Palaios 14:25–39 (Discussion of “Kinneyia” and “Manchuriophycus”)CrossRefGoogle Scholar
  14. Seilacher A (1982) Distinctive features of sandy tempestites. In: Einsele G, Seilacher A (eds) Cyclic and event stratification. Springer-Verlag, Berlin, pp 333–349 (Fig. 2c “Manchuriophycus”, Fig. 4a “Kinneyia”)Google Scholar
  15. Seilacher A (1997) Fossil art. An exhibition of the Geologisches Institut Tübingen University. The Royal Tyrell Museum of Palaeontology, Drumheller, Alberta, Canada, 64 p (See Introduction p 13 “Manchuriophycus”, p 19–20, “Astropolithon”)Google Scholar
  16. Stanley DSA, Pickerill RK (1994) Planolites constriannulatus isp. nov. from the Late Ordovician Geogian Bay Formation of southern Ontario, eastern Canada. Ichnos 3:119–123 (see Pl. 32, “Aristophycus” interpreted as trace fossil Walcottia rugosa)CrossRefGoogle Scholar

Plate 59: Diagenetic Structures

  1. Astin TR (1986) Septarian crack formation in carbonate concretions from shales and mudstones. Clay Miner 21:617–631CrossRefGoogle Scholar
  2. Breyer JA, Busbey AB, Hanson RE, Roy EC III (1995) Possible new evidence for the origin of metazoans prior to 1 Ga: Sediment-filled tubes from the Mesoproterozoic Allamoore Formation, trans-Pecos Texas. Geology 23:269–272 (Allamoore structures)CrossRefGoogle Scholar
  3. Brown RW (1954) How does cone-in-cone material become emplaced? Am J Sci 252:327–376CrossRefGoogle Scholar
  4. Mayer D, Kronberg P (1989) Klüftung in Sedimentgesteinen. 148 p (Fig. 7: crack patterns on cleavage surfaces)Google Scholar
  5. Müller AH (1956) “Parkettierende” Lebensspuren aus dem unteren Buntsandstein Thüringens. Geologie 5:411–412 (Plate 5 shows Liesegang rings compared to Helminthoida)Google Scholar
  6. Müller AH (1962) Fossil oder pseudofossil? Geologie 11:1204–1213 (Discoid cone-in-cone concretion)Google Scholar
  7. Pratt B (1998) Syneresis cracks: Subaqueous shrinkage in argillaceous sediments caused by earthquake-induced dewatering. Sediment Geol 117:1–10 (“Manchuriophycus” and “Rhysonetron” reinterpreted as synaeresis cracks)CrossRefGoogle Scholar
  8. Pratt B (2001) Septarian concretions: Internal cracking caused by synsedimentary earthquakes. Sedimentology 48:189–213 (Septaria interpreted as earthquake-induced cracking of under-compacted center)CrossRefGoogle Scholar
  9. Seilacher A (2001) Concretion morphologies reflecting diagenetic and epigenetic pathways. Sediment Geol 143:41–57CrossRefGoogle Scholar
  10. Yabe H (1939) Note on a Pre-Cambrian fossil from Lyoto (Liautung) Peninsula. Jap J Geol Geogr 16:205–207, 2 pls. (Manchuriophycus Endo 1933)Google Scholar
  11. Yang S, Zhang J, Yang M (2004) Trace fossils of China. Science Press, Beijing, pp 29–263 (Pl. 55, Fig. 1: rectangular counter-septaria)Google Scholar
  12. Yao P (1984) A new trace fossil genus from Jurassic Longzhaogou in eastern Heiongnjiang, China. Regional Geology of China, pp 117–120 (“Mishanichnus”)Google Scholar

Plate 60: Tectograms

  1. Cloud PE, Wright J, Glover L (1976) Traces of animal life from 620-million-year-old rocks in North Carolina. Am Sci 64:396–406 (Interpretation of Vermiforma as a body fossil)Google Scholar
  2. Seilacher A, Meschede M, Bolton EW, Luginsland H (2000) Precambrian ‘fossil’ Vermiforma is a tectograph. Geology 28:235–238 (Reinterpretation of “Vermiforma” as a pseudofossil)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Personalised recommendations