An Adaptive Method of Numerical Attribute Merging for Quantitative Association Rule Mining

  • Jiuyong Li
  • Hong Shen
  • Rodney Topor
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1749)


Mining quantitative association rules is an important topic of data mining since most real world databases have both numerical and categorical attributes. Typical solutions involve partitioning each numerical attribute into a set of disjoint intervals, interpreting each interval as an item, and applying standard boolean association rule mining. Commonly used partitioning methods construct set of intervals that either have equal width or equal cardinality. We introduce an adaptive partitioning method based on repeatedly merging smaller intervals into larger ones. This method provides an effective compromise between the equal width and equal cardinality criteria. Experimental results show that the proposed method is an effective method and improves on both equal-width partitioning and equal-cardinality partitioning.


Data mining association rule continuous attribute discretization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, R., Imielinski, T., Swami, A.: Fast algorithms for mining association rules in large databases. In: 20th Int’l Conf. on Very Large Databases (VLDA) (June 1994)Google Scholar
  2. 2.
    Catlett, J.: On changing continuous attributes into ordered discrete attributes. In: Kodratoff, Y. (ed.) EWSL 1991. LNCS (LNAI), vol. 482, pp. 164–178. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  3. 3.
    Cerquides, J., de Màntaras, R.L.: Proposal and empirical comparison of a parallelizable distance-based discretization method. In: Heckerman, D., Mannila, H., Pregibon, D., Uthurusamy, R. (eds.) Proceedings of the Third International Conference on Knowledge Discovery and Data Mining (KDD-1997), p. 139. AAAI Press, Menlo Park (1997)Google Scholar
  4. 4.
    Van de Merckt, T.: Decision trees in numerical attributes spaces. In: IJCAI-1993 (1993)Google Scholar
  5. 5.
    Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization of continuous features. In: Proc. 12th International Conference on Machine Learning, pp. 194–202. Morgan Kaufmann, San Francisco (1995)Google Scholar
  6. 6.
    Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuousvalued attributes for classification learning. In: IJCAI-1993 (1993)Google Scholar
  7. 7.
    Fukuda, T., Morimoto, Y., Morishita, S., Tokuyama, T.: Mining optimized association rules for numeric attributes. In: Proceedings of the Fifteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, PODS 1996, vol. 15, pp. 182–191. ACM, New York (1996)CrossRefGoogle Scholar
  8. 8.
    Kohavi, R., Sahami, M.: Error-based and entropy-based discretization of continuous features. In: Simoudis, E., Han, J.W., Fayyad, U. (eds.) Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, pp. 114–119. AAAI Press, Menlo ParkGoogle Scholar
  9. 9.
    Lent, B., Swami, A., Widom, J.: Clustering association rules. In: Proceedings of the 13th International Conference on Data Engineering (ICDE 1997), Washington - Brussels - Tokyo, pp. 220–231. IEEE, Los Alamitos (1997)CrossRefGoogle Scholar
  10. 10.
    Leonard, K., Peter, R.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley-Interscience Publication, Hoboken (1990)Google Scholar
  11. 11.
    Miller, R.J., Yang, Y.: Association rules over interval data. SIGMOD Record (ACM Special Interest Group on Management of Data) 26(2), 452–461 (1997)Google Scholar
  12. 12.
    Shen, J.L.H., Pritchard, P.: Knowledge network based association discovery. In: Proc. of 1999 International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA 1999) (1999)Google Scholar
  13. 13.
    Srikant, R., Agrawal, R.: Mining quantitative association rules in large relational tables. SIGMOD Record (ACM Special Interest Group on Management of Data) 25(2) (1996)Google Scholar
  14. 14.
    Wang, K., Tay, S.H.W., Liu, B.: Interestingness-based interval merger for numeric association rules. In: Agrawal, R., Stolorz, P.E., Piatetsky-Shapiro, G. (eds.) Proc. 4th Int. Conf. Knowledge Discovery and Data Mining, KDD, pp. 121–128. AAAI Press, Menlo Park (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Jiuyong Li
    • 1
  • Hong Shen
    • 1
  • Rodney Topor
    • 1
  1. 1.School of Computing and Information TechnologyGriffith UniversityNathanAustralia

Personalised recommendations