Cryptographic Approaches to Privacy in Forensic DNA Databases

  • Philip Bohannon
  • Markus Jakobsson
  • Sukamol Srikwan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1751)


Advances in DNA sequencing technology and human genetics are leading to the availability of inexpensive genetic tests, notably tests for individual predisposition to certain diseases. While such information is often valuable, its availability has raised serious concerns over the privacy of genetic information. These concerns are further heightened when genetic information is gathered into databases. We study access control for one class of such databases, forensic DNA databases, used to match unknown perpetrators against groups of potential suspects – usually convicted criminals. Our key observation is that for legitimate forensic queries, the sensitive information belonging to the target individual is already available to the querying agent in the form of a blood or tissue sample from a crime scene. We show how forensic DNA databases may be implemented so that only legitimate queries are feasible. In particular, a person with unlimited access to the database will be unable to extract information about any individual unless the necessary genetic information for that individual is already known. We develop a general solution framework, and show how to implement databases which handle certain cases of missing or incorrect DNA tests. Our framework and techniques are applicable to the general problem of encrypting information based on partially known or partially correct keys, and its security is based on standard cryptographic assumptions.


Entropy Expense 


  1. 1.
    Anderson, R.: The DeCODE proposal for an Icelandic health database (1998),
  2. 2.
    Annas, G.J.: Privacy rules for DNA databanks: Protecting coded future diaries. JAMA 270(19), 2346–2350 (1993)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and Communication Security, pp. 62–73. ACM Press, New York (1993)CrossRefGoogle Scholar
  4. 4.
    Bleichenbacher, D.: Private communicationGoogle Scholar
  5. 5.
    Budowle, B., Moretti, T.R.: Genotype profiles for six population groups at the 13 CODIS short tandem repeat core loci and other PCR-based loci. Forensic Science Communication 1(2) (July 1999)Google Scholar
  6. 6.
    Butler, D.: UK to set up DNA database of criminals. Nature 370, 588–589 (1994)Google Scholar
  7. 7.
    Coster, M.J., Joux, A., LaMacchia, B.A., Odlyzko, A.M., Schnorr, C.-P., Stern, J.: Improved low-density subset sum algorithms. Journal of Computational Complexity 2, 111–128 (1992)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    de Gorgey, A.: The advent of DNA databanks: Implications for information privacy. American Journal of Law and Medicine 16, 381–398 (1990)Google Scholar
  9. 9.
    Dib, C., Faure, S., Fizames, C., Samson, D., Drouot, N., Vignal, A., Millasseau, P., Marc, S., Hazan, J., Seboun, E., Lathrop, M., Gyapay, G., Morissette, J., Weissenbach, J.: A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature 380, 152–154 (1996)CrossRefGoogle Scholar
  10. 10.
    Ellison, C., Hall, C., Milbert, R., Schneier, B.: Protecting secret keys with personal entropy. Future Generation Computer Systems (1999) (to appear)Google Scholar
  11. 11.
    Fourney, R.: Allele frequency distribution tables,
  12. 12.
    Fox, K.: Criminal justice. In: Mapping Public Policy for Genetic Technologies. National Conference of State Legislators (1998)Google Scholar
  13. 13.
    Goldberg, C.: DNA databanks giving police a powerful weapon, and critics. New York Times, Thursday 19 (1998)Google Scholar
  14. 14.
    Henry, B.E., Rogers, G.S., Mauterer, C., Dodd, D.K., Hicks, J.W.: Technical evaluations of databanking methods. In: Proceedings of the Eighth International Symposium on Human Identification (1997)Google Scholar
  15. 15.
    Juels, A., Wattenberg, M.: A fuzzy commitment scheme. In: 6th ACM Conference on Computer and Communication Security (1999) (to appear)Google Scholar
  16. 16.
    Kirby, L.T.: DNA Fingerprinting: An Introduction. Oxford University Press, Oxford (1992)Google Scholar
  17. 17.
    R. Köttger.: Probe nummer 3889 führte zum Mörder. Die Welt (August 27, 1999)Google Scholar
  18. 18.
    Krontiris, T.G.: Minisatellites and human disease. Science 269, 1682–1683 (1985)CrossRefGoogle Scholar
  19. 19.
    Mannvernd.: The Mannvernd web site,
  20. 20.
    McEwen, J.E.: DNA data banks. In: Rothstein, M. (ed.) Genetic Secrets: Protecting Privacy and Confidentiality in the Genetic Era, pp. 231–254 (1997)Google Scholar
  21. 21.
    McEwen, J.E., Reilly, P.R.: A review of state legislation on DNA forensic data banking. American Journal of Human Genetics 54, 941–958 (1994)Google Scholar
  22. 22.
    Menezes, A.J., van Oorschoot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1997)MATHGoogle Scholar
  23. 23.
    Monrose, F., Reiter, M., Wetzel, S.: Password hardening based on keystroke dynamics. In: 6th ACM Conference on Computer and Commnication Security (1999) (to appear)Google Scholar
  24. 24.
    National Research Council: The Evaluation of Forensic DNA Evidence. National Academy Press (1996)Google Scholar
  25. 25.
    Nguyen, P., Stern, J.: The hardness of the hidden subset sum problem and its cryptographic implications. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 31–46. Springer, Heidelberg (1999)Google Scholar
  26. 26.
    Niezgoda Jr., S.J., Brown, B.: The FBI laboratory’s COmbined DNA Index System program. In: Proceedings of the Sixth International Symposium on Human identification (1995)Google Scholar
  27. 27.
    Working Group of the Ministry of Health and Social Security: Bill on a health sector database (1998),
  28. 28.
    Peerenboom, E.: Central criminal DNA database created in Germany. Nat. Biotechnol. 16(6), 510–511 (1998)CrossRefGoogle Scholar
  29. 29.
    Perez-Pena, R., Blair, J.: Albany plan widely expands sampling of criminals’ DNA. New York Times, Saturday, August 7 (1999)Google Scholar
  30. 30.
    Reilly, P.R.: DNA banking. American Journal of Human Genetics 51, 1169–1170 (1992)Google Scholar
  31. 31.
    Reilly, P.R.: Fear of genetic discrimination drives legislative interest. Human Genome News 8, 3–4 (1997)Google Scholar
  32. 32.
    Scheck, B.: DNA data banking: A cautionary tale. American Journal of Human Genetics 54, 931–933 (1994)Google Scholar
  33. 33.
    Schnorr, C.-P., Hörner, H.H.: Attacking the Chor-Rivest cryptosystem by improved lattice reduction. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 1–12. Springer, Heidelberg (1995)Google Scholar
  34. 34.
    Schumm, J.W.: New approaches to DNA fingerprint analysis. Promega Notes Magazine 58, 12–18 (1996)Google Scholar
  35. 35.
    Shamir, A.: How to share a secret. Communications of the Association for Computing Machinery 22(11), 612–613 (1979)MATHMathSciNetGoogle Scholar
  36. 36.
    Sutherland, G.R., Richards, R.I.: Single tandem DNA repeats and human genetic disease. In: Proceedings of the National Academy of Science USA 92, pp. 3636–3641 (1995)Google Scholar
  37. 37.
    Technical Working Group on DNA Analysis Methods (TWGDAM).: The combined DNA index system (CODIS): A theoretical model. In: Kirby, L.T. (ed.), DNA Fingerprinting: An Introduction. Oxford University Press, Oxford (1992)Google Scholar
  38. 38.
    Wrogeman, K., Biancalana, V., Devys, D., Imbert, G., Trottier, Y., Mandel, J.-L.: Microsatellites and disease: A new paradigm. In: DNA Fingerprinting: State of the Science, pp. 141–152. Birkhäuser Verlag, Basel (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Philip Bohannon
    • 1
  • Markus Jakobsson
    • 1
  • Sukamol Srikwan
    • 2
  1. 1.Bell LaboratoriesMurray HillUSA
  2. 2.Chulalongkorn UniversityBangkokThailand

Personalised recommendations