Advertisement

Complexity Issues in Switching of Graphs

  • Andrzej Ehrenfeucht
  • Jurriaan Hage
  • Tero Harju
  • Grzegorz Rozenberg
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1764)

Abstract

In the context of graph transformations we look at the operation of switching, which can be viewed as an elegant method for realizing global transformations of graphs through local transformations of the vertices. We compare the complexity of a number of problems on graphs with the complexity of these problems extended to the set of switches of a graph. Within this framework, we prove a modification of Yannakakis’ result and use it to show NP-completeness for the embedding problem. Finally we prove NP-completeness for the 3-colourability problem.

Keywords

Polynomial Time Chromatic Number Graph Transformation Hamiltonian Path Complete Bipartite Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Corneil, D.G., Mathon, R.A. (eds.): Geometry and Combinatorics: Selected Works of J. J. Seidel. Academic Press, London (1991)Google Scholar
  2. 2.
    Ehrenfeucht, A., Hage, J., Harju, T., Rozenberg, G.: Pancyclicity in switching classes (submitted) Google Scholar
  3. 3.
    Ehrenfeucht, A., Rozenberg, G.: An introduction to dynamic labeled 2-structures. In: Borzyszkowski, A.M., Sokolowski, S. (eds.) MFCS 1993. LNCS, vol. 711, pp. 156–173. Springer, Berlin (1993)Google Scholar
  4. 4.
    Ehrenfeucht, A., Rozenberg, G.: Dynamic labeled 2-structures. Mathematical Structures in Computer Science 4, 433–455 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979)zbMATHGoogle Scholar
  6. 6.
    Gross, J.L., Tucker, T.W.: Topological Graph Theory. Wiley, New York (1987)zbMATHGoogle Scholar
  7. 7.
    Hage, J.: The membership problem for switching classes with skew gains. Accepted for Fundamenta Informaticae Google Scholar
  8. 8.
    Kratochvíl, J., Nešetřil, J., Zýka, O.: On the computational complexity of Seidel’s switching. In: Combinatorics Graphs Complexity, Prague, pp. 161–166. Prachatice (1990) Google Scholar
  9. 9.
    Seidel, J.J.: A survey of two-graphs. In: Colloquio Internazionale sulle Teorie Combinatorie (Rome,1973), vol. I, Rome, pp. 481–511 (1996); Acc. Naz. Lincei. Reprinted in [1]Google Scholar
  10. 10.
    Seidel, J.J., Taylor, D.E.: Two-graphs, a second survey. In: Lovasz, L., Sós, V.T. (eds.) Algebraic Methods in Graph Theory (Proc. Internat. Colloq., Szeged, 1978), vol. II, pp. 689–711. North-Holland, Amsterdam (1981)Google Scholar
  11. 11.
    Yannakakis, M.: Node- and edge-deletion NP-complete problems. In: Proc. 10th Ann. ACM Symp. on theory of Computing, pp. 253–264. ACM, New York (1978)CrossRefGoogle Scholar
  12. 12.
    Zaslavsky, T.: Biased graphs. I. Bias, balance, and gains. J. Combin. Theory, Ser. B 47, 32–52 (1989)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Andrzej Ehrenfeucht
    • 2
  • Jurriaan Hage
    • 1
  • Tero Harju
    • 3
  • Grzegorz Rozenberg
    • 1
    • 2
  1. 1.Leiden Institute of Advanced Computer ScienceLeidenThe Netherlands
  2. 2.Dept. of Computer ScienceUniversity of Colorado at BoulderBoulderU.S.A.
  3. 3.Dept. of MathematicsUniversity of TurkuTurkuFinland

Personalised recommendations