Refinements of Graph Transformation Systems via Rule Expressions

  • Martin Große-Rhode
  • Francesco Parisi Presicce
  • Marta Simeoni
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1764)


Graph transformation systems are formal models of computational systems, specified by rules that describe the atomic steps of the system. A refinement of a graph transformation system is given by associating with each of its rules a composition of rules of a refining system, that has the same visible effect as the original rule. The basic composition operations on graph transformation rules are sequential and parallel composition, corresponding to temporal and spatial refinements respectively. Syntactically refinements are represented by rule expressions that describe how the refining rules shall be composed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Böhm, P., Fonio, H.-R., Habel, A.: Amalgamation of graph transformations: a synchronization mechanism. Journal of Computer and System Science 34, 377–408 (1987)zbMATHCrossRefGoogle Scholar
  2. 2.
    Corradini, A., Montanari, U., Rossi, F.: Graph processes. Special issue of Fundamenta Informaticae 26(3,4), 241–266 (1996)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic approaches to graph transformation part I: Basic concepts and double pushout approach. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph transformation: Foundations, vol. 1, pp. 163–246. World Scientific, Singapore (1997)CrossRefGoogle Scholar
  4. 4.
    Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 2: Module Specifications and Constraints. EATCS Monographs on Theoretical Computer Science, vol. 21. Springer, Berlin (1990)zbMATHGoogle Scholar
  5. 5.
    Engels, G., Ehrig, H., Heckel, R., Taentzer, G.: A combined reference modeland view-based approach to system specification. Int. Journal of Software and Knowledge Engeneering 7(4), 457–477 (1997)CrossRefGoogle Scholar
  6. 6.
    Grose–Rhode, M., Parisi Presicce, F., Simeoni, M.: Spatial and temporal refinement of typed graph transformation systems. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 553–561. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Grose–Rhode, M., Parisi Presicce, F., Simeoni, M.: Refinements and modules for typed graph transformation systems. In: Fiadeiro, J.L. (ed.) WADT 1998. LNCS, vol. 1589, pp. 137–151. Springer, Heidelberg (1999)Google Scholar
  8. 8.
    Heckel, R., Corradini, A., Ehrig, H., Löwe, M.: Horizontal and vertical structuring of typed graph transformation systems. Math. Struc. in Comp. Science 6(6), 613–648 (1996)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Martin Große-Rhode
    • 1
  • Francesco Parisi Presicce
    • 2
  • Marta Simeoni
    • 2
  1. 1.TU BerlinGermany
  2. 2.Università di Roma La SapienzaItaly

Personalised recommendations