Advertisement

Evolution of a Controller with a Free Variable Using Genetic Programming

  • John R. Koza
  • Jessen Yu
  • Martin A. Keane
  • William Mydlowec
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1802)

Abstract

A mathematical formula containing one or more free variables is “general” in the sense that it provides a solution to an entire category of problems. For example, the familiar formula for solving a quadratic equation contains free variables representing the equation’s coefficients. Previous work has demonstrated that genetic programming can automatically synthesize the design for a controller consisting of a topological arrangement of signal processing blocks (such as integrators, differentiators, leads, lags, gains, adders, inverters, and multipliers), where each block is further specified (“tuned”) by a numerical component value, and where the evolved controller satisfies user-specified requirements. The question arises as to whether it is possible to use genetic programming to automatically create a “generalized” controller for an entire category of such controller design problems — instead of a single instance of the problem. This paper shows, for an illustrative problem, how genetic programming can be used to create the design for ‘both the topology and tuning of controller, where the controller contains a free variable.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, B., Svenson, P., Nordin, P., Nordahl, M.G.: Reactive and memory-based genetic programming for robot control. In: Langdon, W.B., Fogarty, T.C., Nordin, P., Poli, R. (eds.) EuroGP 1999. LNCS, vol. 1598, pp. 161–172. Springer, Heidelberg (1999)Google Scholar
  2. Angeline, P.J.: An alternative to indexed memory for evolving programs with explicil state representations. In: Koza, J.R., Deb, K., Don go, M., Fogel, D.B., Garzon, M., Iba, H., Riolo, R.L. (eds.) Genetic Programming 1997. Proceedings of the Second Annual Conference, Stanford University, July 13-16, pp. 423–430. Morgan Kaufmann, SanFrancisco (1997)Google Scholar
  3. Angeline, P.J.: Multiple interacting programs: A representation for evolving complex behaviors. Cybernetics and Systems 29(8), 779–806 (1998)zbMATHCrossRefGoogle Scholar
  4. Angeline, P.J.: Evolving predictors for chaotic time series. In: Rogers, S., Fogel, D., Bezdek, J., Bosacchi, B. (eds.) Proceedings of SPIE. Application and Science of Computational Intelligence, vol. 3390, pp. 170–180. SPIE - The International Society for Optical Engineering, Bellingham (1998)Google Scholar
  5. Angeline, P.J., Fogel, D.B.: An evolutionary program for the identification o: dynamical systems. In: Rogers, S. (ed.) Proceedings of SPIE. Application and Science of Artificial Neural Networks III, vol. 3077, pp. 409–417. SPIE - The International Society for Optical Engineering, Bellingham (1997)Google Scholar
  6. Astrom, K.J., Hagglund, T.: PID Controllers: Theory, Design, and Tuning, 2nd edn. Instrument Society of America, Research Triangle Park (1995)Google Scholar
  7. Banzhaf, W., Nordin, P., Keller, R., Olmer, M.: Generating adaptive behavior for a real robot using function regression with genetic programming. In: Koza, J.R., Deb, K., Dorigo, M., Fogel, D.B., Garzon, M., Iba, H., Riolo, R.L. (eds.) Genetic Programming 1997: Proceedings of the Second Annual Conference, Stanford University, July 13-16, pp. 35–43. Morgan Kaufmann, San Francisco (1997)Google Scholar
  8. Bennett III, F.H., Koza, J.R., Shipman, J., Stiffelman, O.: Building a parallel computer system for $18,000 that performs a half peta-flop per day. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) GECCO 1999: Proceedings of the Genetic and Evolutionary Computation Conference, Orlando, Florida USA, pp. 1484–1490. Morgan Kaufmann, San Francisco (1999)Google Scholar
  9. Boyd, S.P., Barratt, C.H.: Linear Controller Design: Limits of Performance. Prentice Hall, Englewood Cliffs (1991)Google Scholar
  10. Callender, A., Stevenson, A.B.: Automatic Control of Variable Physical Characteristics. United States Patent 2,175,985 (1939), Filed in United States (February 17, 1936), Filed in Great Britain (February 13, 1935), Issued in United States (October 10, 1939) Google Scholar
  11. Crawford, L.S., Cheng, V.H.L., Menon, P.K.: Synthesis of flight vehicle guidance and control laws using genetic search methods. In: Proceedings of 1999 Conference on Guidance, Navigation, and Control, American Institute of Aeronautics and Astronautics, Reston (1999); Paper AIAA-99-4153Google Scholar
  12. Dewell, L.D., Menon, P.K.: Low-thrust orbit transfer optimization using genetic search. In: Proceedings of 1999 Conference on Guidance, Navigation, and Control. American Institute of Aeronautics and Astronautics, Reston (1999); Paper AIAA-99-4151Google Scholar
  13. Dorf, R.C., Bishop, R.H.: Modern Control Systems, 8th edn. Addison-Wesley, Menlo Park (1998)zbMATHGoogle Scholar
  14. Gruau, F.: Genetic synthesis of Boolean neural networks with a cell rewriting developmental process. In: Schaffer, J.D., Whitley, D. (eds.) Proceedings of the Workshop on Combinations of Genetic Algorithms and Neural Networks 1992. The IEEE Computer Society Press, Los Alamitos (1992)Google Scholar
  15. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)Google Scholar
  16. Jones, H.S.: Control Apparatus. United States Patent 2,282,726 (1942), Filed (October 25, 1939), Issued (May 12,1942) Google Scholar
  17. Kinnear Jr., K.E. (ed.): Advances in Genetic Programming. The MIT Press, Cambridge (1994)Google Scholar
  18. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  19. Koza, J.R., Bennett III, F.H., Andre, D., Keane, M.A.: Automated design of both the topology and sizing of analog electrical circuits using genetic programming. In: Gero, J.S., Sudweeks, F. (eds.) Artificial Intelligence in Design 1996, pp. 151–170. Kluwer Academic Publishers, Dordrecht (1996)Google Scholar
  20. Koza, J.R., Bennett III, F.H., Andre, D., Keane, M.A.: Genetic Programming HI: Darwinian Invention and Problem Solving. Morgan Kaufmann, San Francisco (1999)zbMATHGoogle Scholar
  21. Koza, J.R., Bennett III, F.H., Andre, D., Keane, M.A., Brave, S.: Genetic Programming HI Videotape: Human-Competitive Machine Intelligence. Morgan Kaufmann, San Francisco (1999)Google Scholar
  22. Koza, J.R., Keane, M.A., Yu, J., Bennett III, F.H., Mydlowec, W.: Automatic creation of human-competitive programs and controllers by means of genetic programming. Genetic Programming and Evolvable Machines 1(1 -2), 121–164 (2000)zbMATHCrossRefGoogle Scholar
  23. Man, K.F., Tang, K.S., Kwong, S., Halang, W.A.: Genetic Algorithms for Control and Signal Processing. Springer, London (1997)Google Scholar
  24. Man, K.F., Tang, K.S., Kwong, S., Halang, W.A.: Genetic Algorithms: Concepts and Designs. Springer, London (1999)zbMATHGoogle Scholar
  25. Marenbach, P., Bettenhausen, K.D., Freyer, S.: Signal path oriented pproach for generation of dynamic process models. In: Koza, J.R., Goldberg, D.E., Fogel, D.B., Riolo, R.L. (eds.) Genetic Programming 1996: Proceedings of the First Annual Conference, Stanford University, July 28-31, pp. 327–332. MIT Press, Cambridge (1996)Google Scholar
  26. Menon, P.K., Yousefpor, M., Lam, T., Steinberg, M.L.: Nonlinear flight control system synthesis using genetic programming. In: Proceedings of 1995 Conference on Guidance, Navigation, and Control, pp. 461–470. American Institute of Aeronautics and Astronautics, Reston (1995)Google Scholar
  27. Quarles, T., Newton, A.R., Pederson, D.O., Sangiovanni-Vincentelli, A.: SPICE 3 Version 3F5 User’s Manual. Department of Electrical Engineering and Computer Science, University of California, Berkeley (1994)Google Scholar
  28. Sterling, T.L., Salmon, J., Becker, D.J., Savarese, D.F.: How to Build a Beowulf: A Guide to Implementation and Application of PC Clusters. MIT Press, Cambridge (1999)Google Scholar
  29. Sweriduk, G.D., Menon, P.K., Steinberg, M.L.: Robust command augmentation system design using genetic search methods. In: Proceedings of 1998 Conference on Guidance, Navigation, and Control, pp. 286–294. American Institute of Aeronautics and Astronautics, Reston (1998)Google Scholar
  30. Sweriduk, G.D., Menon, P.K., Steinberg, M.L.: Design of a pilot-activated recovery system using genetic search methods. In: Proceedings of 1998 Conference on Guidance, Navigation, and Control. American Institute of Aeronautics and Astronautics, Reston (1999)Google Scholar
  31. Teller, A.: Evolving Programmers: SMART Mutation. Technical Report CMU-CS- 96. Computer Science Department, Carnegie Mellon University (1996a)Google Scholar
  32. Teller, A.: Evolving programmers: The co-evolution of intelligent recombination operators. In: Angeline, P.J., Kinnear Jr., K.E. (eds.) Advances in Genetic Programming, vol. 2, The MIT Press, Cambridge (1996b)Google Scholar
  33. Teller, A., Veloso, M.: Learning Tree Structured Algorithms for Orchestration into an Object Recognition System. Technical Report CMU-CS-95-101. Computer Science Department, Carnegie Mellon University ( 1995a)Google Scholar
  34. Teller, A., Veloso, M.: Program evolution for data mining. In: Louis, S. (ed.) The International Journal of Expert Systems, vol. (3), pp. 216–236. JAI Press, Greenwich (1995b); Special Issue on Genetic Algorithms and Knowledge BasesGoogle Scholar
  35. Teller, A., Veloso, M.: A controlled experiment: evolution for learning difficult problems. In: Proceedings of Seventh Portuguese Conference on Artificial Intelligence, pp. 165–176. Springer, Heidelberg (1995c)Google Scholar
  36. Teller, A., Veloso, M.: Algorithm Evolution for Face Recognition: What Makes a Picture Difficult? In: Proceedings of the IEEE International Conference on Evolutionary omputation. IEEE Press, Los Alamitos (1995d)Google Scholar
  37. Teller, A., Veloso, M.: Language Representation Progression in PADO. In: Proceedings of AAAI Fall Symposium on Artificial Intelligence. AAAI Press, Menlo Park (1995e)Google Scholar
  38. Teller, A., Veloso, M.: PADO: A new learning architecture for object recognition. In: Ikeuchi, K., Veloso, M. (eds.) Symbolic Visual Learning, pp. 81–116. Oxford University Press, Oxford (1996)Google Scholar
  39. Whitley, D., Gruau, F., Preatt, L.: Cellular encoding applied to neurocontrol. In: Eshelman, L.J. (ed.) Proceedings of the Sixth International Conference on Genetic Algorithms, pp. 460–467. Morgan Kaufmann, San Francisco (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • John R. Koza
    • 1
  • Jessen Yu
    • 2
  • Martin A. Keane
    • 3
  • William Mydlowec
    • 2
  1. 1.Stanford UniversityStanford
  2. 2.Genetic Programming Inc.Los Altos
  3. 3.Econometrics Inc.Chicago

Personalised recommendations