Advertisement

Seeding Genetic Programming Populations

  • W. B. Langdon
  • J. P. Nordin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1802)

Abstract

We show genetic programming (GP) populations can evolve under the influence of a Pareto multi-objective fitness and program size selection scheme, from “perfect” programs which match the training material to general solutions. The technique is demonstrated with programmatic image compression, two machine learning benchmark problems (Pima Diabetes and Wisconsin Breast Cancer) and an insurance customer profiling task (Benelearn99 data mining).

Keywords

Breast Cancer Genetic Algorithm Genetic Programming Programming Technique Benchmark Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aler, R., Borrajo, D., Isasi, P.: Genetic programming and deductive-inductive learning: A multistrategy approach. In: Shavlik, J. (ed.) Proceedings of the Fifteenth International Conference on Machine Learning, ICML 1998, Madison, Wisconsin, USA, pp. 10–18. Morgan Kaufmann, San Francisco (1998)Google Scholar
  2. 2.
    Chen, S.-H., Yeh, C.-H.: Using genetic programming to model volatility in financial time series: The case of nikkei 225 and S&P 500. In: Proceedings of the 4th JAFEE International Conference on Investments and Derivatives (JIC 1997), July 29-31, pp. 288–306. Aoyoma Gakuin University, Tokyo (1997)Google Scholar
  3. 3.
    William East, E.: Infrastructure work order planning using genetic algorithms. In: Banzhaf, W., et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1510–1516. Morgan Kaufmann, San Francisco (1999)Google Scholar
  4. 4.
    Eisenstein, J.: Genetic algorithms and incremental learning. In: Koza, J.R. (ed.) Genetic Algorithms and Genetic Programming at Stanford 1997, Stanford Bookstore, Stanford, California, 94305-3079 USA, March 17 1997, pp. 47–56 (1997)Google Scholar
  5. 5.
    Ferrer, G.J., Martin, W.N.: Using genetic programming to evolve board evaluation functions for a boardgame. In: 1995 IEEE Conference on Evolutionary Computation, Perth, Australia, vol. 2, p. 747. IEEE Press, Los Alamitos (1995)Google Scholar
  6. 6.
    Holmes, P.: The odin genetic programming system. Tech Report RR-95-3, Computer Studies, Napier University, Craiglockhart, Edinburgh, EH14 1DJ, UK (1995)Google Scholar
  7. 7.
    Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  8. 8.
    Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press, Cambridge (1994)zbMATHGoogle Scholar
  9. 9.
    Kraft, D.H., Petry, F.E., Buckles, W.P., Sadasivan, T.: The use of genetic programming to build queries for information retrieval. In: Proceedings of the 1994 IEEE World Congress on Computational Intelligence, pp. 468–473 (1994)Google Scholar
  10. 10.
    Langdon, W.B.: The evolution of size in variable length representations. In: 1998 IEEE International Conference on Evolutionary Computation, pp. 633–638 (1998)Google Scholar
  11. 11.
    Langdon, W.B.: Data Structures and Genetic Programming: Genetic Programming + Data Structures = Automatic Programming! Kluwer, Dordrecht (1998)Google Scholar
  12. 12.
    Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)zbMATHGoogle Scholar
  13. 13.
    Nordin, P., Banzhaf, W.: Complexity compression and evolution. In: Eshelman, L. (ed.) Genetic Algorithms: Proceedings of the Sixth International Conference (ICGA 1995), pp. 310–317. Morgan Kaufmann, San Francisco (1995)Google Scholar
  14. 14.
    Nordin, P., Banzhaf, W.: Programmatic compression of images and sound. In: Koza, J.R., et al. (eds.) Genetic Programming 1996: Proceedings of the First Annual Conference, pp. 345–350. MIT Press, Cambridge (1996)Google Scholar
  15. 15.
    Nordin, P., Banzhaf, W., Francone, F.D.: Compression of effective size in genetic programming. In: Haynes, T., et al. (eds.) Foundations of Genetic Programming, GECCO 1999 workshop, July 13 (1999)Google Scholar
  16. 16.
    Ross Quinlan, J.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)Google Scholar
  17. 17.
    Rosea, J.: Generality versus size in genetic programming. In: Koza, J.R., et al. (eds.) Genetic Programming 1996: Proceedings of the First Annual Conference, pp. 381–387. MIT Press, Cambridge (1996)Google Scholar
  18. 18.
    Sharif, A.M., Barrett, A.N.: Seeding a genetic population for mesh optimisation and evaluation. In: Koza, J.R. (ed.) Late Breaking Papers at the Genetic Programming 1998 Conference, Standford. Stanford University Bookstore (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • W. B. Langdon
    • 1
  • J. P. Nordin
    • 2
  1. 1.Centrum voor Wiskunde en InformaticaAmsterdamThe Netherlands
  2. 2.Chalmers University of TechnologyGøteborgSweden

Personalised recommendations