Voevodsky’s Nordfjordeid Lectures: Motivic Homotopy Theory

  • Vladimir Voevodsky
  • Oliver Röndigs
  • Paul Arne Østvær
Part of the Universitext book series (UTX)


Motivic homotopy theory is a new and in vogue blend of algebra and topology. Its primary object is to study algebraic varieties from a homotopy theoretic viewpoint. Many of the basic ideas and techniques in this subject originate in algebraic topology.


Entropy Manifold Tate Kelly Topo 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. A. A. Beilinson. Height pairing between algebraic cycles. In K-theory, arithmetic and geometry (Moscow, 1984–1986), vol. 1289 of Lecture Notes in Math., pp. 1–25. Springer, Berlin, 1987.CrossRefGoogle Scholar
  2. A. K. Bousfield and E. M. Friedlander. Homotopy theory of Ã-spaces, spectra, and bisimplicial sets. In Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977), II, vol. 658 of Lecture Notes in Math., pp. 80–130. Springer, Berlin, 1978.Google Scholar
  3. K. S. Brown and S. M. Gersten. Algebraic K-theory as generalized sheaf cohomology. In Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), pp. 266–292. Lecture Notes in Math., Vol. 341. Springer, Berlin, 1973.Google Scholar
  4. S. Bloch and S. Lichtenbaum. A spectral sequence for motivic cohomology. UIUC K-theory Preprint Archives, 62, 1995.Google Scholar
  5. B. A. Blander. Local projective model structures on simplicial presheaves. K-Theory, 24(3):283–301, 2001.MATHCrossRefGoogle Scholar
  6. S. Bloch. Algebraic cycles and higher K-theory. Adv. Math., 61:267–304, 1986.MATHCrossRefGoogle Scholar
  7. D. Dugger, S. Hollander, and D. C. Isaksen. Hypercovers and simplicial presheaves. Math. Proc. Cambridge Philos. Soc., 136(1):9–51, 2004.MATHCrossRefGoogle Scholar
  8. D. Dugger and D. C. Isaksen. Weak equivalences of simplicial presheaves. In Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic K-theory, vol. 346 of Contemp. Math., pp. 97–113. Amer. Math. Soc., Providence, RI, 2004.Google Scholar
  9. B. I. Dundas, O. Röndigs, and P. A. Østvær. Motivic functors. Doc. Math., 8:489–525 (electronic), 2003.MATHGoogle Scholar
  10. D. Dugger. Universal homotopy theories. Adv. Math., 164(1):144–176, 2001.MATHCrossRefGoogle Scholar
  11. B. I. Dundas. Nordfjordeid lectures. In Summer school on motivic homotopy theory. This volume. Voevodsky's Nordfjordeid Lectures 219Google Scholar
  12. E.M Friedlander and A. Suslin. The spectral sequence relating algebraic K-theory to motivic cohomology. Ann. Sci. Ecole Norm. Sup., 35(6):773– 875, 2002.MATHGoogle Scholar
  13. P. G. Goerss and J. F. Jardine. Localization theories for simplicial presheaves. Canad. J. Math., 50(5):1048–1089, 1998.MATHGoogle Scholar
  14. P. S. Hirschhorn. Model categories and their localizations, vol. 99 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2003.Google Scholar
  15. M. Hovey. Model categories. American Mathematical Society, Providence, RI, 1999.MATHGoogle Scholar
  16. M. Hovey. Spectra and symmetric spectra in general model categories. J. Pure Appl. Algebra, 165(1):63–127, 2001.MATHCrossRefGoogle Scholar
  17. M. Hovey, B. Shipley, and J. Smith. Symmetric spectra. J. Amer. Math. Soc., 13(1):149–208, 2000.MATHCrossRefGoogle Scholar
  18. D. Isaksen. Flasque model structures for presheaves. UIUC K-theory Preprint Archives, 679, 2004.Google Scholar
  19. J. F. Jardine. Simplicial presheaves. J. Pure Appl. Algebra, 47(1):35–87, 1987.MATHCrossRefGoogle Scholar
  20. J. F. Jardine. Motivic symmetric spectra. Doc. Math., 5:445–553 (electronic), 2000.MATHGoogle Scholar
  21. J. F. Jardine. Intermediate model structures for simplicial presheaves. Preprint, 2003.Google Scholar
  22. F. Lárusson. Model structures and the Oka principle. J. Pure Appl. Algebra, 192(1–3):203–223, 2004.MATHCrossRefGoogle Scholar
  23. M. Levine. Nordfjordeid lectures. In Summer school on motivic homotopy theory. This volume.Google Scholar
  24. M. Levine. Techniques of localization in the theory of algebraic cycles. J. Algebraic Geom., 10(2):299–363, 2001.MATHGoogle Scholar
  25. M. Levine. The homotopy coniveau filtration. UIUC K-theory Preprint Archives, 628, 2003.Google Scholar
  26. F. Morel and V. Voevodsky. A1-homotopy theory of schemes. Inst. Hautes Études Sci. Publ. Math., (90):45–143 (2001), 1999.MATHGoogle Scholar
  27. A. Neeman. The Grothendieck duality theorem via Bousfield's techniques and Brown representability. J. Amer. Math. Soc., 9(1):205–236, 1996.MATHCrossRefGoogle Scholar
  28. A. Neeman. Triangulated categories, vol. 148 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2001.Google Scholar
  29. J. Smith. Combinatorial model categories. In preparation.Google Scholar
  30. A. Suslin. On the Grayson spectral sequence. In Number theory, algebra, and algebraic geometry. Collected papers dedicated to the 80th birthday of Academician Igor' Rostislavovich Shafarevich. Transl. from the Russian. Moskva: Maik Nauka/Interperiodika. Proceedings of the Steklov Institute of Mathematics 241, 202–237 (2003); translation from Tr. Mat. Inst. Im. V. A. Steklova 241, 218–253, 2003.Google Scholar
  31. A. Suslin and V. Voevodsky. Singular homology of abstract algebraic varieties. Invent. Math., 123(1):61–94, 1996.MATHCrossRefGoogle Scholar
  32. V. Voevodsky. A1-homotopy theory. In Proceedings of the International Congress of Mathematicians, Vol. I (Berlin, 1998), pp. 579–604 (electronic), 1998. 220 V. Voevodsky et al.Google Scholar
  33. V. Voevodsky. Homotopy theory of simplicial sheaves in completely decomposable topologies. UIUC K-theory Preprint Archives, 443, August 2000.Google Scholar
  34. V. Voevodsky. Triangulated categories of motives over a field. In Cycles, transfers, and motivic homology theories, pp. 188–238. Princeton Univ. Press, Princeton, NJ, 2000.Google Scholar
  35. V. Voevodsky. Cancellation theorem. UIUC K-theory Preprint Archives, 541, 2002.Google Scholar
  36. V. Voevodsky. Open problems in the motivic stable homotopy theory. I. In Bogomolov, Fedor (ed.) et al., Motives, polylogarithms and Hodge theory. Part I: Motives and polylogarithms. Papers from the International Press conference, Irvine, CA, USA, June 1998. Somerville, MA: International Press. Int. Press Lect. Ser. 3, No. I, 3–34. 2002.Google Scholar
  37. V. Voevodsky. A possible new approach to the motivic spectral sequence for algebraic K-theory. In Recent progress in homotopy theory (Baltimore, MD, 2000), vol. 293 of Contemp. Math., pp. 371–379. Amer. Math. Soc., Providence, RI, 2002.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Vladimir Voevodsky
    • 1
  • Oliver Röndigs
    • 2
  • Paul Arne Østvær
    • 3
  1. 1.School of MathematicsInstitute for Advanced StudyPrincetonUSA
  2. 2.Fakultät für MathematikUniversität BielefeldBielefeldGermany
  3. 3.Department of MathematicsUniversity of OsloOsloNorway

Personalised recommendations