Advertisement

An introduction to Unilateral Dynamics

  • Jean Jacques Moreau
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 14)

Abstract

The paper is devoted to mechanical systems with a finite number of degrees of freedom. After showing how inequality requirements in evolution problems can be handled through differential inclusions, one introduces dynamics by an elementary example of unilateral mechanical constraint. Then a general setting is constructed for multibody multicontact systems. The description of unilateral interaction at each possible contact point is formalized, with account of possible friction. This generates the numerical time-stepping policy called Contact Dynamics. The treatment of collisions or other frictional catastrophes in this framework leads to measure-differential inclusions, an essential tool in nonsmooth dynamics. The energy balance of nonsmooth evolutions is discussed. Two illustrations of the proposed numerical methods are presented. The former concerns the mechanisms of collapse of a bridge arch under local forcing. In the latter, the construction of a conical pile of grains is simulated, in order to investigate stresses in the bulk and the distribution of pressure on ground.

Keywords

Contact Force Differential Inclusion Contact Dynamics Unilateral Contact Frictionless Contact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abadie M. (2000) Dynamic simulation of rigid bodies : modelling of frictional contact. In: Brogliato B. (Ed.) Impacts in Mechanical Systems. Analysis and Modelling. Springer, Berlin Heidelberg, 61–144CrossRefGoogle Scholar
  2. 2.
    Acary V. (2001) Contribution à la modélisation mécanique et numérique des édifices maçonnés, Thesis, Université Aix-Marseille IIGoogle Scholar
  3. 3.
    Alart P, Curnier A. (1991) A mixed formulation for frictional contact problems prone to Newton like methods. Comput. Meth. Appl. Mech. Engrg. 92, 353–375MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Aubin J. P. (1990) Viability Theory. Birkhäuser-Verlag, Basel BostonGoogle Scholar
  5. 5.
    Aubin J. P., Cellina A. (1984) Differential inclusions. Springer-Verlag, BerlinCrossRefzbMATHGoogle Scholar
  6. 6.
    Ballard P. (2001) Formulation and well-posedness of the dynamics of rigid body systems with unilateral or frictional constraints. Phil. Trans. Roy. Soc., Ser. A, to appearGoogle Scholar
  7. 7.
    Baraff D. (1993) Issues in computing contact forces for non-penetrating rigid bodies. Algorithmica 10, 292–352MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Brézis H. (1973) Opérateurs maximaux monotones et semi-groupes de contraction dans les espaces de Hilbert. North-Holland, AmsterdamGoogle Scholar
  9. 9.
    Brogliato B. (1999) Nonsmooth Mechanics, 2d. edition. Springer, LondonCrossRefzbMATHGoogle Scholar
  10. 10.
    Brogliato B., ten Dam A. A., Paoli L., Génot F., Abadie M. (2001) Numerical simulation of finite dimensional multibody nonsmooth mechanical systems. ASME Applied Mechanics Reviews, to appear.Google Scholar
  11. 11.
    Cates M. E., Wittmer J. P., Bouchaud J.-P., Claudin P. (1998) Development of stresses in cohesionless poured sand. Phil. Trans. Roy. Soc. London, Ser. A, 356, 2535–2560CrossRefzbMATHGoogle Scholar
  12. 12.
    Chabrand P., Dubois F., Raous M. (1998) Various numerical methods for solving unilateral contact problems with friction. Mathl. Comput. Modelling 28, 97–108CrossRefzbMATHGoogle Scholar
  13. 13.
    Chatterjee A., Ruina A. (1998) Two interpretations of rigidity in rigid-body collisions. ASME J. Appl. Mech. 65, 894–900CrossRefGoogle Scholar
  14. 14.
    Chevoir F., Prochnow M., Jenkins J., Mills P. (2001) Dense granular flows down an inclined plane. Powders and Grains 2001 (Sendai, Japan). Balkema, Rotterdam Brookfield, to appearGoogle Scholar
  15. 15.
    Cholet C. (1998) Chocs de solides rigides. Thesis, Univ. Paris 6Google Scholar
  16. 16.
    Cholet C., Dimnet E., Chevoir F., Moucheront P., Frémond M. (1997) Experimental study of collisions of angular particles. In: Behringer R., Jenkins J. (Eds.) Powders and grains 97. Balkema, Rotterdam Brookfield, 543–546Google Scholar
  17. 17.
    Cottle R. W., Pang J.-S., Stone R. E. (1992) The Linear Complementarity Problem. Academic Press, Boston, etc.zbMATHGoogle Scholar
  18. 18.
    Christensen P. W., Klarbring A., Pang J. S., Strömberg N. (1998) Formulation and comparison of algorithms for frictional contact problems. Int. J. Num. Meth. Engng. 42, 145–173CrossRefzbMATHGoogle Scholar
  19. 19.
    Cundall P. A. (1971) A computer model for simulating progressive large scale movements of blocky rock systems, Proceedings of the Symposium of the International Society of Rock Mechanics, Vol1, Nancy, France, 132–150Google Scholar
  20. 20.
    Curnier A. (1984) A theory of friction. Int. J. Solids Struct. 20, 637–647CrossRefzbMATHGoogle Scholar
  21. 21.
    Deimling K. (1992) Multivalued Differential Equations. De Gruyter, BerlinCrossRefzbMATHGoogle Scholar
  22. 22.
    Delassus E. (1917) Mémoire sur la théorie des liaisons finies unilatérales. Ann. Sci. Ecole Norm. Sup. 34, 95–179MathSciNetzbMATHGoogle Scholar
  23. 23.
    De Saxcé G., Feng Z. Q. (1991) New inequation and functional for contact with friction. J. Mech. of Struct. and Machines 19, 301–325CrossRefGoogle Scholar
  24. 24.
    Génot F., Brogliato B. (1999) New results on Painlevé paradoxes. European Journal of Mechanics, A/Solids, 18, 653–677Google Scholar
  25. 25.
    Foerster S., Louge M., Chang H., Allia K. (1994) Measurements of the collision properties of small spheres. Phys. Fluids 6, 1108–1115.CrossRefGoogle Scholar
  26. 26.
    Frémond M. (1987) Adhérence des solides. J. Mécanique Théorique et Appliquée 6, 383–407zbMATHGoogle Scholar
  27. 27.
    Frémond M. (1995) Rigid body collisions. Physics Letters A 204, 33–41MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Haug, E. J. (1989) Computer Aided Kinematics and Dynamics, vol. 1. Allyn and Bacon, BostonGoogle Scholar
  29. 29.
    Heyman J. (1966) The stone skeleton. Int. J. Solids Structures 2, 249–279CrossRefGoogle Scholar
  30. 30.
    Heyman J. (1995) The stone skeleton, structural engineering of masonry architecture. Cambridge University Press, Cambridge U. K.Google Scholar
  31. 31.
    Isac G. (1992) Complementarity Problems. Lecture Notes in Math., Vol. 1528. Springer-Verlag, BerlinGoogle Scholar
  32. 32.
    Ivanov A. P. (1999) On the problem of constrained collision. In: Pfeiffer F., Glocker Ch. (Eds.) Unilateral Multibody Contacts. Kluwer, Dordrecht Boston London, 107–116CrossRefGoogle Scholar
  33. 33.
    Jean M., Moreau J. J. (1987) Dynamics in the presence of unilateral contact and dry friction. In: Del Piero G., Macer i F. (Eds.) Unilateral Problems in Structural Analysis 2, CISM Courses and Lectures Vol. 304. Springer-Verlag, Wien, New York, 151–196Google Scholar
  34. 34.
    Jean M., Moreau J. J. (1992) Unilaterality and dry friction in the dynamics of rigid body collections. In: Curnier A. (Ed.) Contact Mechanics International Symposium. Presses Polytechn. et Universit. Romandes, Lausanne, 31–48.Google Scholar
  35. 35.
    Jean M., Touzot G. (1988) Implementation of unilateral contact and dry friction in computer codes dealing with large deformations problems. J. Mécanique Théorique et Appliquée 7 (suppl. Nr. 1), 145–160zbMATHGoogle Scholar
  36. 36.
    Jean M. (1995) Frictional contact in collections of rigid or deformable bodies : numerical simulation of geomaterials. In: Selvadurai A.P.S., Boulon M.J. (Eds.) Mechanics of Geomaterial Interfaces. Elsevier, Amsterdam, 453–486Google Scholar
  37. 37.
    Jean M. (1999) The Non Smooth Contact Dynamics method. In: Martins J. A. C., Klarbring A. (Eds.) Computational Modeling of Contact and Fric-tion, special issue of Computer Meth. in Appl. Mech. and Engng. 177, 235–257Google Scholar
  38. 38.
    Johansson L. (1999) A linear complementarity algorithm for rigid body impact with friction. European Journal of Mechanics, A/Solids, 18, 703–717MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Johansson L., Klarbring A. (2000) Study of frictional impact using a nonsmooth equation solver. ASME J. Appl. Mech. 67, 267–273CrossRefzbMATHGoogle Scholar
  40. 40.
    Jourdan, F., Alart, P., Jean, M. (1998) A Gauss-Seidel-like algorithm to solve frictional contact problems. Computer Meth. Appl. Mech. Engng. 155, 31–47MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Knight J. B., Jaeger H. M., Nagel S. R. (1993) Vibration-induced size separation in granular media : the convection connection. Phys. Rev. Lett. 70, 3728–3731CrossRefGoogle Scholar
  42. 42.
    Kunze M., Monteiro Marques M. D. P. (2000) An introduction to Moreau’s sweeping process. In: Brogliato B. (Ed.) Impacts in Mechanical Systems. Analysis and Modelling. Springer, Berlin Heidelberg, 1–60CrossRefGoogle Scholar
  43. 43.
    Maw N., Barber J. R., Fawcett J. N. (1977) The rebound of elastic bodies in oblique impact. Mech. Res. Comm. 4, 17–21CrossRefGoogle Scholar
  44. 44.
    Monteiro Marques M. D. P. (1993) Differential Inclusions in Nonsmooth Mechanical Problems: Shocks and Dry Friction. Birkhäuser, Basel, Boston, BerlinCrossRefzbMATHGoogle Scholar
  45. 45.
    Moreau J. J. (1963) Les liaisons unilatérales et le principe de Gauss. Comptes Rendus Acad. Sci. Paris 256, 871–874MathSciNetGoogle Scholar
  46. 46.
    Moreau J. J. (1966) Quadratic programming in mechanics: dynamics of onesided constraints. SIAM J. Control 4, 153–158.MathSciNetCrossRefGoogle Scholar
  47. 47.
    Moreau J. J. (1973) Problème d’évolution associé à un convexe mobile d’un espace hilbertien. Comptes Rendus Acad. Sci. Paris 276, 791–794MathSciNetzbMATHGoogle Scholar
  48. 48.
    Moreau J. J. (1974) On unilateral constraints, friction and plasticity. In Capriz G., Stampacchia G. (Eds.) New variational techniques in mathematical physics, C.I.M E. II ciclo 1973. Edizioni Cremonese, Roma,173–322.Google Scholar
  49. 49.
    Moreau J. J. (1976) Application of convex analysis to the treatment of elastoplastic systems. In: Germain P., Nayroles B. (Eds.) Applications of functional analysis to problems of mechanics, Lecture Notes in Mathematics 503, Springer-Verlag, Berlin, Heidelberg, New York, 56–89.CrossRefGoogle Scholar
  50. 50.
    Moreau J. J. (1977) Evolution problem associated with a moving convex set in a Hilbert space. J. Diff. Equ. 26, 347–374MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Moreau J. J. (1985) Standard inelastic shocks and the dynamics of unilateral constraints. In: Del Piero G., Macen i F. (Eds.) Unilateral Problems in Structural Analysis, CISM Courses and Lectures Vol. 288. Springer-Verlag, Wien New York, 173–221Google Scholar
  52. 52.
    Moreau J. J. (1988) Unilateral contact and dry friction in finite freedom dynamics. In: Moreau J. J., Panagiotopoulos P.D. (Eds.) Nonsmooth Mechanics and Applications, CISM Courses and Lectures, Vol. 302. Springer-Verlag, Wien New York, 1–82Google Scholar
  53. 53.
    Moreau J. J. (1988) Bounded variation in time. In: Moreau J. J. , Panagiotopoulos P. D., Strang G. (Eds.) Topics in Nonsmooth Mechanics. Birkhäuser, Basel Boston Berlin, 1–74Google Scholar
  54. 54.
    Moreau J. J. (1989) An expression of classical dynamics, Ann. Inst. H. Poincaré Anal. Non Linéaire. 6 (suppl.), 1–48. Volume also available as: Attouch H., Aubin J.-P., Clarke F., Ekeland I. (Eds.) Analyse Non Linéaire, GauthierVillars, ParisMathSciNetzbMATHGoogle Scholar
  55. 55.
    Moreau J. J. (1994) Some numerical methods in multibody dynamics : application to granular materials. Eur. J. Mech., A/Solids 13, n°4 — suppl., 93–114MathSciNetzbMATHGoogle Scholar
  56. 56.
    Moreau J. J. (1995) Numerical experiments in granular dynamics: vibrationinduced size segregation. In: Raous M. et al. (Eds.) Contact Mechanics. Plenum Press, New York, 347–358CrossRefGoogle Scholar
  57. 57.
    Moreau J. J. (1997) Numerical investigation of shear zones in granular materials. In: Grassberger P., Wolf D. (Eds.) Proc. HLRZ-Workshop on Friction, Arching, Contact Dynamics. World Scientific, Singapore, 233–247Google Scholar
  58. 58.
    Moreau, J. J. (1999) Some basics of unilateral dynamics. In: Pfeiffer F., Glocker Ch. (Eds.) Unilateral Multibody Contacts. Kluwer, Dordrecht Boston London, 1–14CrossRefGoogle Scholar
  59. 59.
    Moreau J. J. (1999) Numerical aspects of the sweeping process. In: Martins J. A. C., Klarbring A. (Eds.) Computational Modeling of Contact and Friction, special issue of Computer Meth. in Appl. Mech. and Engng. 177, 329–349Google Scholar
  60. 60.
    Moreau, J. J. (1999) Évolutions en présence de liaisons unilatérales : notions de base. In: Guédra-Degeorges D., Ladevèze P., Raous M. (Eds.) Actes du 4e Colloque National en Calcul des Structures. Teknea, Toulouse, 25–40.Google Scholar
  61. 61.
    Moreau, J. J. (1999) Application des algorithmes “Contact Dynamics” aux milieux granulaires, Actes du 14e Congrès Français de Mécanique, Toulouse (CD ROM, ISBN 2–84088040-7)Google Scholar
  62. 62.
    Moreau J. J. (2000) Contact et frottement en dynamique des systèmes de corps rigides. Rev. Europ. des Eléments Finis 9, 9–28zbMATHGoogle Scholar
  63. 63.
    Nouguier C., Bohatier C., Moreau J. J., Radjai F. (2000) Force fluctuations in a pushed granular material. Granular matter 2, 171–178CrossRefGoogle Scholar
  64. 64.
    Paoli L., Schatzman M. (1993) Mouvements à un nombre fini de degrés de liberté avec contraintes unilatérales: cas avec perte d’énergie. Math. Modelling and Num. Anal. 27, 673–717MathSciNetzbMATHGoogle Scholar
  65. 65.
    Pfeiffer F., Clocker Ch. (1996) Multibody Dynamics with Unilateral Contacts. John Wiley and Sons, New YorkCrossRefzbMATHGoogle Scholar
  66. 66.
    Raous M. (1993) Experimental analysis of the rocking of a rigid block. 3rd Pan American Congress of Applied Mechanics (PACAM III), Sao Paulo, BrazilGoogle Scholar
  67. 67.
    Raous M. (1999) Quasistatic Signorini problem with Coulomb friction and coupling to adhesion. In: Wriggers P., Panagiotopoulos P. (Eds) New developments in contact problems, CISM Courses and Lectures, Vol. 384, Springer Verlag, Wien New York, 101–178Google Scholar
  68. 68.
    Raous M., Cangémi L., Cocu M. (1999) A consistent model coupling adhesion, friction and unilateral contact. Computer Meth. in Appl. Mech. and Engng. 177, 383–399CrossRefzbMATHGoogle Scholar
  69. 69.
    Rockafellar R. T. (1970) Convex Analysis. Princeton Univ. Press, PrincetonzbMATHGoogle Scholar
  70. 70.
    Savage S. B. (1998) Modeling and granular material boundary value problems. In: Herrmann H. J. et al. (Eds.) Physics of dry ganular media. Kluwer, Dordrecht Boston London, 25–96Google Scholar
  71. 71.
    Stewart D. E. (1998) Convergence of a time-stepping scheme for rigid body dynamics and resolution of Painlevé’s problem. Arch. Rational Mech. Anal. 145, 215–260CrossRefzbMATHGoogle Scholar
  72. 72.
    Stoianovici S.P., Hurmuzlu Y. (1996) A critical study of the concepts of rigid body collision theory. J. Appl. Mech. 63, 307–316CrossRefGoogle Scholar
  73. 73.
    Stronge W. J. (2000) Contact problems for elasto-plastic impact in multi-body systems. In: Brogliato B. (Ed.) Impacts in Mechanical Systems. Analysis and Modelling. Springer, Berlin Heidelberg, 189–234CrossRefGoogle Scholar
  74. 74.
    Trinkle J., Pang J.-S, Sudarski S., Lo G. (1997) On dynamic multirigid-bodycontact problems with Coulomb friction. Zeitschr. Angew. Math. Mech. 77, 267–279CrossRefzbMATHGoogle Scholar
  75. 75.
    Vola D., Pratt E., Jean M., Raous M. (1998) Consistent time discretization for a dynamical frictional contact problem and complementarity techniques. Rev. Europ. des Eléments Finis 7, 149–162zbMATHGoogle Scholar
  76. 76.
    Walton O. R. (1993) Numerical simulation of inelastic, frictional particleparticle interactions. In: Roco M. C. (Ed.) Particulate two-phase flow. Butterworth-Heinemann, Boston, 884–910Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Jean Jacques Moreau
    • 1
  1. 1.Laboratoire de Mécanique et Génie Civil, cc 048Université Montpellier IIMontpellier Cedex 5France

Personalised recommendations