Probabilistic k-Testable Tree Languages

  • Juan Ramón Rico-Juan
  • Jorge Calera-Rubio
  • Rafael C. Carrasco
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1891)


In this paper, we present a natural generalization of k-gram models for tree stochastic languages based on the k-testable class. In this class of models, frequencies are estimated for a probabilistic regular tree grammar wich is bottom-up deterministic. One of the advantages of this approach is that the model can be updated in an incremental fashion. This method is an alternative to costly learning algorithms (as inside-outside-based methods) or algorithms that require larger samples (as many state merging/splitting methods).


Markov Chain Model Tree Automaton Tree Language Stochastic Sample Tree Grammar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BPd+92]
    Brown, P.F., Della Pietra, V.J., de Souza, P.V., Lai, J.C., Mercer, R.L.: Class-based n-gram models of natural language. Computational Linguistics 18(4), 467–479 (1992)Google Scholar
  2. [Cha93]
    Charniak, E.: Statistical Language Learning. MIT Press, Cambridge (1993)Google Scholar
  3. [Cha96]
    Charniak, E.: Tree-bank grammars. In: Proceedings of the Thirteenth National Conference on Artificial Intelligence and the Eighth Innovative Applications of Artificial Intelligence Conference, Menlo Park, pp. 1031–1036. AAAI Press/MIT Press (1996)Google Scholar
  4. [Chu67]
    Chung, K.L.: Markov Chains with Stationary Transition Probabilities, 2nd edn. Springer, Berlin (1967)zbMATHGoogle Scholar
  5. [COCR00]
    Carrasco, R.C., Oncina, J., Calera-Rubio, J.: Stochastic inference of regular tree languages. Machine Learning (2000) (to appear)Google Scholar
  6. [CR86]
    Chaudhuri, R., Rao, A.N.V.: Approximating grammar probabilities: Solution of a conjecture. Journal of the ACM 33(4), 702–705 (1986)CrossRefMathSciNetGoogle Scholar
  7. [CRC98]
    Calera-Rubio, J., Carrasco, R.C.: Computing the relative entropy between regular tree languages. Information Processing Letters 68(6), 283–289 (1998)CrossRefMathSciNetGoogle Scholar
  8. [CT91]
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley Series in Telecommunications. John Wiley & Sons, New York (1991)zbMATHCrossRefGoogle Scholar
  9. [Gar93]
    García, P.: Learning k-testable tree sets from positive data. Technical Report DSIC-ii-1993-46, DSIC, Universidad Politécnica de Valencia (1993)Google Scholar
  10. [GV90]
    García, P., Vidal, E.: Inference of k-testable languages in the strict sense and application to syntactic pattern recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(9), 920–925 (1990)CrossRefGoogle Scholar
  11. [Jel98]
    Jelinek, F.: Statistical Methods for Speech Recognition. The MIT Press, Cambridge (1998)Google Scholar
  12. [Knu93]
    Knuutila, T.: Inference of k-testable tree languages. In: Bunke, H. (ed.) Advances in Structural and Syntactic Pattern Recognition, Proc. Intl. Workshop on Structural and Syntactic Pattern Recognition, Bern, Switzerland, World Scientific, Singapore (1993)Google Scholar
  13. [NEK95]
    Ney, H., Essen, U., Kneser, R.: On the estimation of small probabilities by leaving-one-out. IEEE Trans. on Pattern Analysis and Machine Intelligence 17(12), 1202–1212 (1995)CrossRefGoogle Scholar
  14. [Rub76]
    Rubin, F.: Experiments in text file compression. Communications of the ACM 19(11), 617–623 (1976)CrossRefGoogle Scholar
  15. [Sak92]
    Sakakibara, Y.: Efficient learning of context-free grammars from positive structural examples. Information and Computation 97(1), 23–60 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  16. [SS94]
    Stolcke, A., Segal, J.: Precise n-gram probabilities from stochastic context-free grammars. Technical Report TR-94-007, International Computer Science Institute, Berkeley, CA (January 1994)Google Scholar
  17. [Sto95]
    Stolcke, A.: An efficient context-free parsing algorithm that computes prefix probabilities. Computational Linguistics 21(2), 165–201 (1995)MathSciNetGoogle Scholar
  18. [Wet80]
    Wetherell, C.S.: Probabilistic languages: A review and some open questions. ACM Computing Surveys 12(4), 361–379 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  19. [Yok95]
    Yokomori, T.: On polynomial-time learnability in the limit of strictly deterministic automata. Machine Learning 19, 153–179 (1995)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Juan Ramón Rico-Juan
    • 1
  • Jorge Calera-Rubio
    • 1
  • Rafael C. Carrasco
    • 1
  1. 1.Departament de Llenguatges i Sistemes InformàticsUniversitat d’AlacantAlacanSpain

Personalised recommendations