IR Pedestrian Detection for Advanced Driver Assistance Systems

  • M. Bertozzi
  • A. Broggi
  • M. Carletti
  • A. Fascioli
  • T. Graf
  • P. Grisleri
  • M. Meinecke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2781)

Abstract

This paper describes a system for pedestrian detection in infrared images implemented and tested on an experimental vehicle. A specific stabilization procedure is applied after image acquisition and before processing to cope with vehicle movements affecting the camera calibration. The localization of pedestrians is based on the search for warm symmetrical objects with specific size and aspect ratio. A set of filters is used to reduce false detections. The final validation process relies on the human shape’s morphological characteristics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nanda, H., Davis, L.: Probabilistic Template Based Pedestrian Detection in Infrared Videos. In: Procs. IEEE Intelligent Vehicles Symposium 2002 (June 2002)Google Scholar
  2. 2.
    Xu, F., Fujimura, K.: Pedestrian Detection and Tracking with Night Vision. In: Procs. IEEE Intelligent Vehicles Symposium (June 2002)Google Scholar
  3. 3.
    Guilloux, Y.L., Lonnoy, J.: PAROTO Project: The Benefit of Infrared Imagery for Obstacle Avoidance. In: Procs. IEEE Intelligent Vehicles Symposium 2002 (June 2002)Google Scholar
  4. 4.
    Tsuji, T., Hattori, H., Watanabe, M., Nagaoka, N.: Development of Night-vision System. IEEE Trans. on Intelligent Transportation Systems 3, 203–209 (2002)CrossRefGoogle Scholar
  5. 5.
    Bertozzi, M., Broggi, A., Fascioli, A., Sechi, M.: Shape-based Pedestrian Detection. In: Procs. IEEE Intelligent Vehicles Symposium 2000, October 2000, pp. 215–220 (2000)Google Scholar
  6. 6.
    Gavrila, D.M., Geibel, J.: Shape-Based Pedestrian Detection and Tracking. In: Procs. IEEE Intelligent Vehicles Symposium 2002 (June 2002)Google Scholar
  7. 7.
    Curio, C., Edelbrunner, J., Kalinke, T., Tzomakas, C., von Seelen, W.: Walking Pedestrian Recognition. IEEE Trans. on ITS 1, 155–163 (2000)Google Scholar
  8. 8.
    Oren, M., Papageorgiu, C., Sihna, P., Osuna, E., Poggio, T.: Pedestrian Detection using Wavelet Templates. In: Procs. IEEE Conf. on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, pp. 193–199 (1997)Google Scholar
  9. 9.
    Zhao, L., Thorpe, C.: Stereo- and Neural Network-based Pedestrian Detection. In: Procs. IEEE Intl. Conf. on Intelligent Transportation Systems 1999, pp. 298–303 (October 1999)Google Scholar
  10. 10.
    Heisele, B., Wöhler, C.: Motion-based Recognition of Pedestrians. In: Procs. IEEE Intl Conf. on Pattern Recognition, pp. 1325–1330 (June 1998)Google Scholar
  11. 11.
    Cutler, R., Davis, L.S.: Robust real-time periodic motion detection, analysis and applications. IEEE Trans. on PAMI 22, 781–796 (2000)Google Scholar
  12. 12.
    Bertozzi, M., Broggi, A., Graf, T., Grisleri, P., Meinecke, M.: Pedestrian Detection in Infrared Images. In: Procs. IEEE Intelligent Vehicles Symposium 2003 (June 2003) (in press)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • M. Bertozzi
    • 1
  • A. Broggi
    • 1
  • M. Carletti
    • 1
  • A. Fascioli
    • 1
  • T. Graf
    • 2
  • P. Grisleri
    • 1
  • M. Meinecke
    • 2
  1. 1.Dipartimento di Ingegneria dell’InformazioneUniversità di ParmaParmaItaly
  2. 2.Volkswagen AGElectronic ResearchWolfsburgGermany

Personalised recommendations