Advertisement

Efficient Implementation of Rijndael Encryption in Reconfigurable Hardware: Improvements and Design Tradeoffs

  • Francois-Xavier Standaert
  • Gael Rouvroy
  • Jean-Jacques Quisquater
  • Jean-Didier Legat
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2779)

Abstract

Performance evaluation of the Advanced Encryption Standard candidates has led to intensive study of both hardware and software implementations. However, although plentiful papers present various implementation results, it seems that efficiency could still be greatly improved by applying good design rules adapted to devices and algorithms. This paper addresses various approaches for efficient FPGA implementations of the Advanced Encryption Standard algorithm. As different applications of the AES algorithm may require different speed/area tradeoffs, we propose a rigorous study of the possible implementation schemes, but also discuss design methodology and algorithmic optimization in order to improve previously reported results. We propose heuristics to evaluate hardware efficiency at different steps of the design process. We also define an optimal pipeline that takes the place and route constraints into account. Resulting circuits significantly improve previously reported results: throughput is up to 18.5 Gbits/sec and area requirements can be limited to 542 slices and 10 RAM blocks with a ratio throughput/area improved by at least 25% of the best-known designs in the Xilinx Virtex-E technology.

Keywords

Block Cipher Advance Encryption Standard Pipeline Stage FPGA Implementation Round Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Xilinx: Virtex 2.5V Field Programmable Gate Arrays Data Sheet, http://www.xilinx.com
  2. 2.
    Daemen, J., Rijmen, V.: AES Proposal: Rijndael, NIST’s AES home page, http://www.nist.gov/aes
  3. 3.
    Elbirt, A.J., et al.: An FPGA Implementation and Performance Evaluation of the AES Block Cipher Candidate Algorithm Finalists. In: The Third Advanced Encryption Standard (AES3) Candidate Conference, New York, USA, April 13–14 (2000)Google Scholar
  4. 4.
    Gaj, K., Chodowiec, P.: Comparison of the Hardware Performance of the AES Candidates using Reconfigurable Hardware. In: The Third Advanced Encryption Standard (AES3) Candidate Conference, New York, USA, April 13–14 (2000)Google Scholar
  5. 5.
    Chodowiec, P., et al.: Experimental Testing of the Gigabit IPSec-Compliant Implementations of Rijndael and Triple-DES Using SLAAC-1V FPGA Accelerator Board. In: Davida, G.I., Frankel, Y. (eds.) ISC 2001. LNCS, vol. 2200, pp. 220–234. Springer, Heidelberg (2001)Google Scholar
  6. 6.
    Dandalis, A., et al.: A Comparative Study of Performance of AES Candidates Using FPGAs. In: The Third Advanced Encryption Standard (AES3) Candidate Conference, New York, USA, April 13–14 (2000)Google Scholar
  7. 7.
    Ichikawa, T., et al.: Hardware Evaluation of the AES Finalists. In: The Third Advanced Encryption Standard (AES3) Candidate Conference, New York, USA, April 13–14 (2000)Google Scholar
  8. 8.
    Kwon, O., et al.: Implementation of AES and Triple-DES Cryptography using a PCI-based FPGA Board. In: The proceedings of ITC-CSCC 2002: The International Technical Conference On Circuits/Systems, Computers and Communications (2002)Google Scholar
  9. 9.
    McLoone, M., McCanny, J.V.: High Performance Single Ship FPGA Rijndael Algorithm Implementations. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 65–76. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Helion Technology, High Performance AES (Rijndael) Cores for XILINX FPGA, http://www.heliontech.com
  11. 11.
    Fischer, V., Drutarovsky, M.: Two Methods of Rijndael Implementation in Reconfigurable Hardware. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 65–76. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    CAST, AES Encryption Cores, http://www.cast-inc.com
  13. 13.
    Amphion Semiconductor, CS5210-40: High Performance AES Encryption Cores (2001), http://www.amphion.com/cs5210.html
  14. 14.
    Sklavos, N., Koufopavlou, O.: Architecutre and VLSI Implementations of the AES-Proposal Rijndael. IEEE Transactions on Computers 51(12), 1454–1459 (2002)Google Scholar
  15. 15.
    Satoh, A., et al.: Compact Hardware Architecture for 128-bit Block Cipher Camellia. In: The Proceedings of the Third NESSIE Workshop, Munich, Germany, November 6–7 (2002)Google Scholar
  16. 16.
    Weaver, N., Wawrzynek, J.: High Performance Compact AES Implementations in Xilinx FPGAs, http://www.cs.berkeley.edu/nweaver/Rijndael
  17. 17.
    Zhang, X., Parhi, K.K.: Implementation approaches for the advanced encryption standard algorithm. IEEE Circuits and Systems Magazine, 24–46 ( Fourth Quarter 2002)Google Scholar
  18. 18.
    Standaert, F.X., Rouvroy, G., Legat, J.D., Quisquater, J.J.: A Methodology to Implement Block Ciphers in Reconfigurable Hardware and its Application to Fast and Compact AES Rijndael. In: The proceedings of FPGA 2003: the Field Programmable Logic Array Conference, Monterey, California, February 23–25 (2003)Google Scholar
  19. 19.
    Rudra, A., et al.: Efficient Rijndael Encryption Implementation with Composite Field Arithmetic. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 65–76. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Satoh, A., et al.: A Compact Rijndael Hardware Architecture with S-Box Optimization. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 239–254. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  21. 21.
    Wolkerstorfer, J., Oswald, E., Lamberger, M.: An ASIC Implementation of the AES SBoxes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 67–78. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Francois-Xavier Standaert
    • 1
  • Gael Rouvroy
    • 1
  • Jean-Jacques Quisquater
    • 1
  • Jean-Didier Legat
    • 1
  1. 1.UCL Crypto Group, Laboratoire de MicroelectroniqueUniversite Catholique de LouvainLouvain-La-NeuveBelgium

Personalised recommendations