Design and Implementation of a True Random Number Generator Based on Digital Circuit Artifacts

  • Michael Epstein
  • Laszlo Hars
  • Raymond Krasinski
  • Martin Rosner
  • Hao Zheng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2779)


There are many applications for true, unpredictable random numbers. For example the strength of numerous cryptographic operations is often dependent on a source of truly random numbers. Sources of random information are available in nature but are often hard to access in integrated circuits. In some specialized applications, analog noise sources are used in digital circuits at great cost in silicon area and power consumption. These analog circuits are often influenced by periodic signal sources that are in close proximity to the random number generator. We present a random number generator comprised entirely of digital circuits, which utilizes electronic noise. Unlike earlier work [11], only standard digital gates without regard to precise layout were used.


  1. 1.
    Chaney, T.J.: Measured flip-flop responses to marginal triggering. IEEE Transactions on Computers 32(12), 1207–1209 (1983)CrossRefGoogle Scholar
  2. 2.
    Couranz, G.R., Wann, D.F.: Theoretical and experimental behavior of synchronizers operating in the metastable region. IEEE Transactions on Computers 24(6), 604–616 (1975)CrossRefGoogle Scholar
  3. 3.
    Golomb, S.W.: Shift register sequences (1967), Reprinted by Aegean Park Press (1982)Google Scholar
  4. 4.
    Kleeman, L., Cantoni, A.: Metastable Behavior in Digital Systems. IEEE Design and Test of Computers 4, 4–19 (1987)Google Scholar
  5. 5.
    Marino, L.R.: General theory of metastable operation. IEEE Transactions on Computers 30(2), 107–115 (1981)MATHGoogle Scholar
  6. 6.
    Johnson, H.: Random and deterministic jitter. EDN Magazine, 24 (June 27, 2002)Google Scholar
  7. 7.
    Rowe, M.: Jitter Discrepancies: not explained. EDN Magazine, 48 (February 6, 2003)Google Scholar
  8. 8.
    Schneier, B.: Applied Cryptography, 2nd edn., pp. 425–426. Wiley & Sons, Chichester (1995)Google Scholar
  9. 9.
    Matsui, M.: Linear Cryptanalysis Method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)Google Scholar
  10. 10.
    Bellido, M.J., Acosta, A.J., et al.: A simple binary random number generator: new approaches for CMOS VLSI. In: 35th MIDWEST Symposium on Circuits and Systems (August 1992)Google Scholar
  11. 11.
    Bellido, M.J., Acosta, A.J., Valencia, M., Barriga, A., Huertas, J.L.: Simple Binary Random Number Generator. Electronics Letters 28(7), 617–618 (1992)CrossRefGoogle Scholar
  12. 12.
    Walker, S., Foo, S.: Evaluating metastability in electronic circuits for random number generation. In: IEEE Computer Society Workshop on VLSI, April 2001, pp. 99–102 (2001)Google Scholar
  13. 13.
    Kleeman, L.: The jitter model for metastability and its application to redundant synchronizers. IEEE Transactions on Computers 39(7), 930–942 (1990)CrossRefGoogle Scholar
  14. 14.
    Reyneri, L.M., del Corso, L.M., Sacco, B.: Oscillatory Metastability in Homogeneous and Inhomogeneous Flip-flops. IEEE J. of Solid-State Circ. 25(1), 254–264 (1990)CrossRefGoogle Scholar
  15. 15.
    Marsaglia, G.: DIEHARD: A Battery of Tests of Randomness (1996),
  16. 16.
    Davies, R.: Hardware random number generators, Statistics Research Associates Limited,
  17. 17.
    Jun, B., Kocher, P.: The Intel® random number generator, Cryptography research, inc., April 22 (1999),

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Michael Epstein
    • 1
  • Laszlo Hars
    • 2
  • Raymond Krasinski
    • 1
  • Martin Rosner
    • 3
  • Hao Zheng
    • 4
  1. 1.Philips Electronics, Philips Intellectual Property and StandardsBriarcliff ManorUSA
  2. 2.Seagate TechnologyPittsburghUSA
  3. 3.Philips Electronics, Philips ResearchBriarcliff ManorUSA
  4. 4.ActiveEyePleasantvilleUSA

Personalised recommendations