Fast Modular Division for Application in ECC on Reconfigurable Logic

  • Alan Daly
  • William Marnane
  • Tim Kerins
  • Emanuel Popovici
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2778)


Elliptic Curve Public Key Cryptosystems are becoming increasingly popular for use in mobile devices and applications where bandwidth and chip area are limited. They provide much higher levels of security per key length than established public key systems such as RSA. The underlying operation of elliptic curve point multiplication requires modular multiplication, division/inversion and addition/subtraction. Division is by far the most costly operation in terms of speed. This paper proposes a new divider architecture and implementation on FPGA for use in an ECC processor.


Elliptic Curve Elliptic Curf Elliptic Curve Cryptography Modular Multiplication Modular Exponentiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Miller, V.S.: Use of Elliptic Curves in Cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)Google Scholar
  2. 2.
    Koblitz, N.: Elliptic Curve Cryptosystems. Math. Comp. 48, 203–209 (1987)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Blake, I., Seroussi, G., Smart, N.: Elliptic Curves in Cryptography. London Mathematical Society Lecture Note Series, vol. 265. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  4. 4.
    Ernst, M., Jung, M., Madlener, F., Huss, S., Blümel, R.: A Reconfigurable System on Chip Implementation for Elliptic Curve Cryptography over GF(2n). In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 381–399. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Kerins, T., Popovici, E., Marnane, W., Fitzpatrick, P.: Fully Parameterizable Elliptic Curve Cryptography Processor over GF(2m)’. In: Glesner, M., Zipf, P., Renovell, M. (eds.) FPL 2002. LNCS, vol. 2438, pp. 750–759. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    IEEE Standards Department. IEEE 1363/D13 Standard Specifications for Public Key Cryptography (2000)Google Scholar
  7. 7.
    ANSI X9.62. Public Key Cryptography for the Financial Services Industry. The Elliptic Curve Digital Signature Algorithm (ECDSA) (1999)Google Scholar
  8. 8.
    Orlando, G., Paar, C.: A Scalable GF(p) Elliptic Curve Processor Architecture for Programmable Hardware. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 348–363. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Kaliski Jr., B.S.: The Montgomery Inverse and it’s applications. IEEE Trans. on Computers 44(8), 1064–1065 (1995)CrossRefGoogle Scholar
  10. 10.
    Montgomery, P.L.: Modular Multiplication without Trial Division. Math. Computation 44, 519–521 (1985)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Daly, A., Marnane, W.: Efficient Architectures for Implementing Montgomery Modular Multiplication and RSA Modular Exponentiation on Reconfigurable Logic. In: 10th Intl Symposium on FPGA (FPGA 2002), February 2002, pp. 40–49 (2002)Google Scholar
  12. 12.
    Gutub, A., Tenca, A.F., Koc, C.K.: Scalable VLSI Architecture for GF(p) Montgomery Modular Inverse Computation. In: IEEE Computer Society Annual Symposium on VLSI, April 2002, pp. 53–58 (2002)Google Scholar
  13. 13.
    Gutub, A., Tenca, A.F., Savas, E., Koc, C.K.: Scalable and unified hardware to compute Montgomery inverse in GF(p) and GF(2n). In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 484–499. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Daly, A., Marnane, W., Popovici, E.: Fast Modular Inversion in the Montgomery Domain on Reconfigurable Logic. In: Irish Signals and Systems Conference 2003 (July 2003) (to appear)Google Scholar
  15. 15.
    Savas, E., Koc, C.K.: The Montgomery Modular Inverse - Revisited. IEEE Trans. on Computers 49(7), 763–766 (2000)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kobayashi, T., Morita, H.: Fast Modular Inversion Algorithm to Match any Operation Unit. IEICE Trans. Fundamentals E82-A(5), 733–740 (1999)Google Scholar
  17. 17.
    Shantz, S.C.: From Euclid’s GCD to Montgomery Multiplication to the Great Divide. Technical Report TR-2001-95, Sun Microsystems Laboratories (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Alan Daly
    • 1
  • William Marnane
    • 1
  • Tim Kerins
    • 1
  • Emanuel Popovici
    • 2
  1. 1.Dept. of Electrical & Electronic EngineeringUniversity College CorkIreland
  2. 2.Dept. of Microelectronic EngineeringUniversity College CorkIreland

Personalised recommendations