Advertisement

An FPL Bioinspired Visual Encoding System to Stimulate Cortical Neurons in Real-Time

  • Leonel Sousa
  • Pedro Tomás
  • Francisco Pelayo
  • Antonio Martinez
  • Christian A. Morillas
  • Samuel Romero
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2778)

Abstract

This paper proposes a real-time bioinspired visual encoding system for multielectrodes’ stimulation of the visual cortex supported on Field Programmable Logic. This system includes the spatio-temporal preprocessing stage and the generation of varying in time spike patterns to stimulate an array of microelectrodes and can be applied to build a portable visual neuroprosthesis. It only requires a small amount of hardware which is achieved by taking advantage of the high operating frequency of the FPGAs to share circuits in time. Experimental results show that with the proposed architecture a real-time visual encoding system can be implemented in FPGAs with modest capacity.

Keywords

Clock Cycle Field Programmable Gate Array Microelectrode Array Computational Architecture Retina Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cortica visual neuro-prosthesis for the blind (cortivis), http://cortivis.umh.es
  2. 2.
    Ahnelt, P., Ammerm ller, J., Pelayo, F., Bongard, M., Palomar, D., Piedade, M., Ferrandez, J., Borg-Graham, L., Fernandez, E.: Neuroscientific basis for the design and development of a bioinspired visual processing front-end. In: Proc. of IFMBE, Vienna, pp. 1692–1693 (2002)Google Scholar
  3. 3.
    Lazzaro, J., Wawrzynek, J.: A multi-sender asynchronous extension to the address event protocol. In: Proc. of 16th Conference on Advanced Research in VLSI, pp. 158–169 (1995)Google Scholar
  4. 4.
    Maynard, E.: The utah intracortical electrode array: a recording structure for potential brain-computer interfaces. Elec. Clin. Neurophysiol. 102, 228–239 (1997)CrossRefGoogle Scholar
  5. 5.
    Brian, W.: Foundations of Vision: Behavior, Neuroscience and Computation. Sinauer Associates (1995)Google Scholar
  6. 6.
    Wilke, S., Thiel, A., Eurich, C., Greschner, M., Bongard, M., Ammermuler, J., Schwegler, H.: Population coding of motion patterns in the early visual system. J. Comp Physiol A 187, 549–558 (2001)CrossRefGoogle Scholar
  7. 7.
    Oppenheim, A., Willsky, A.: Signal and Systems. Prentice Hall, Englewood Cliffs (1983)zbMATHGoogle Scholar
  8. 8.
    Berry, M., Brivanlou, I., Jordan, T., Meister, M.: Anticipation of moving stimuli by the retina. Nature (Lond) 398, 334–338 (1999)CrossRefGoogle Scholar
  9. 9.
    Pelayo, F., Martinez, A., Romero, S., Morillas, C., Ros, E., Fernández, E.: Cortical visual neuroprosthesis for the blind: Retina-like software/hardware preprocessor. In: Proc. of IEEE-EMBS International Conference on Neural Engineering, Capri (2003)Google Scholar
  10. 10.
    Gerstner, W., Kistler, W.: Spiking Neuron Models. Cambridge University Press, Cambridge (2002)CrossRefGoogle Scholar
  11. 11.
    XILINX. Spartan-II 2.5V FPGA Family: Functional Description, Product Specification (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Leonel Sousa
    • 1
  • Pedro Tomás
    • 1
  • Francisco Pelayo
    • 2
  • Antonio Martinez
    • 2
  • Christian A. Morillas
    • 2
  • Samuel Romero
    • 2
  1. 1.Dept. of Electrical and Computer EngineeringIST/INESC-IDPortugal
  2. 2.Dept. of Computer Architecture and TechnologyUniversity of GranadaSpain

Personalised recommendations