Advertisement

Extra-dimensional Island-Style FPGAs

  • Herman Schmit
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2778)

Abstract

This paper proposes modifications to standard island-style FPGAs that provide interconnect capable of scaling at the same rate as typical netlists, unlike traditionally tiled FPGAs. The proposal uses a logical third and fourth dimensions to create increasing wire density for increasing logic capacity. The additional dimensions are mapped to standard two-dimensional silicon. This innovation will increase the longevity of a given cell architecture, and reduce the cost of hardware, CAD tool and Intellectual Property (IP) redesign. In addition, extra-dimensional FPGA architectures provide a conceptual unification of standard FPGAs and time-multiplexed FPGAs.

Keywords

Extra Dimension Channel Width Field Programmable Gate Array Switch Point Wire Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexander, M.J., Cohoon, J.P., Colflesh, J.L., Karro, J., Robins, G.: Threedimensional field-programmable gate arrays. In: Proceedings of the IEEE International ASIC Conference, pp. 253–256 (September 1995)Google Scholar
  2. 2.
    Alexander, M.J., Cohoon, J.P., Karro, J., Colflesh, J.L., Peters, E.L., Robins, G.: Placement and routing for three-dimensional FPGAs. In: 4th Canadian Workshop on Field-Programmable Devices, Toronto, Canada, May 1996, pp. 11–18 (1996)Google Scholar
  3. 3.
    Betz, V., Rose, J.: Effect of the prefabricated routing track distribution on FPGA area efficiency. IEEE Transactions on VLSI Systems 6(3), 445–456 (1998)CrossRefGoogle Scholar
  4. 4.
    Cheng, C.E.: RISA: Accurate and efficient placement routability modeling. In: Proceedings of IEEE/ACM International Conference on CAD (ICCAD), November 1996, pp. 690–695 (1996)Google Scholar
  5. 5.
    DeHon, A.: DPGA-coupled microprocessors: Commodity ICs for the early 21st century. In: Buell, D.A., Pocek, K.L. (eds.) Proceedings of IEEE Workshop on FPGAs for Custom Computing Machines, Napa, CA, April 1994, pp. 31–39 (1994)Google Scholar
  6. 6.
    Depreitere, J., Neefs, H., Van Marck, H., Van Campenhout, J., Baets, R., Dhoedt, B., Thienpont, H., Veretennicoff, I.: An optoelectronic 3-D field programmable gate array. In: Hartenstein, R.W., Servit, M.Z. (eds.) FPL 1994. LNCS, vol. 849, pp. 352–360. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  7. 7.
    Donath, W.E.: Placement and average interconnection lengths of computer logic. IEEE Transactions on Circuits and Systems, 272–277 (April 1979)Google Scholar
  8. 8.
    Fan, H., Liu, J., Wu, Y.-L.: General models for optimum arbitrary-dimension fpga switch box designs. In: Proceedings of IEEE/ACM International Conference on CAD (ICCAD), November 2000, pp. 93–98 (2000)Google Scholar
  9. 9.
    El Gamal, A.: Two-dimensional stochastic model for interconnections in master slice integrated circuits. IEEE Transactions on Circuits and Systems 28(2), 127–138 (1981)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hutton, M., Grossman, J.P., Rose, J., Corneil, D.: Characterization and parameterized random generation of digital circuits. In: Proceedings of the 33rd ACM/SIGDA Design Automation Conference (DAC), Las Vegas, NV, June 1996, pp. 94–99 (1996)Google Scholar
  11. 11.
    Hutton, M., Rose, J., Corneil, D.: Generation of synthetic sequential benchmark circuits. In: 5th ACM/SIGDA International Symposium on Field Programmable Gate Arrays (FPGA 1997) (February 1997)Google Scholar
  12. 12.
    Landman, B.S., Russo, R.L.: On pin versus block relationship for partions of logic circuits. IEEE Transactions on Computers C-20, 1469–1479 (1971)CrossRefGoogle Scholar
  13. 13.
    Leeser, M., Meleis, W.M., Vai, M.M., Xu, W., Chiricescu, S., Zavracky, P.M.: Rothko: A three-dimensional FPGA. IEEE Design and Test of Computers 15(1), 16–23 (1998)CrossRefGoogle Scholar
  14. 14.
    Meleis, W.M., Leeser, M., Zavracky, P., Vai, M.M.: Architectural design of a three dimensional FPGA. In: Proceedings of the 17th Conference on Advanced Research in VLSI (ARVLSI), September 1997, pp. 256–268 (1997)Google Scholar
  15. 15.
    Scalera, S., Vazquez, J.R.: The design and implementation of a context switching FPGA. In: Buell, D.A., Pocek, K.L. (eds.) Proceedings of IEEE Workshop on FPGAs for Custom Computing Machines, Napa, CA, April 1998, pp. 78–85 (1998)Google Scholar
  16. 16.
    Trimberger, S.: Scheduling designs into a time-multiplexed FPGA. In: 6th ACM/SIGDA International Symposium on Field Programmable Gate Arrays (FPGA 1998), pp. 153–160 (February 1998)Google Scholar
  17. 17.
    Trimberger, S., Carberry, D., Johnson, A., Wong, J.: A time-multiplexed FPGA. In: Arnold, J., Pocek, K.L. (eds.) Proceedings of IEEE Workshop on FPGAs for Custom Computing Machines, Napa, CA, April 1997, pp. 22–28 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Herman Schmit
    • 1
  1. 1.Dept. of Electrical and Computer EngineeringCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations