Advertisement

Modified Fuzzy C-Means Clustering Algorithm for Real-Time Applications

  • Jesús Lázaro
  • Jagoba Arias
  • José L. Martín
  • Carlos Cuadrado
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2778)

Abstract

The fuzzy approach in image processing is taking each day greater importance. It is greatly due to the fact that every new application of artificial vision is closer to human vision. This means that tightly knot algorithms are not always a good solution and a more "imprecise" and fuzzy approach is desirable. This paper describes a modified Fuzzy C-Means algorithm intended to be implemented in hardware. The original algorithm was modified to match the desired level of parallelism, speed and to simplify the hardware implementations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hathaway, R.J., Bezdek, J.C.: Optimization of Clustering Criteria by Reformulation. IEEE Transactions onf Fuzzy Systems 3(2), 241–245 (1995)CrossRefGoogle Scholar
  2. 2.
    Kamel, M.S., Selim, S.Z.: New algortihm for solving the fuzzy clustering problem. Pattern Recognition 27(3), 421–428 (1994)CrossRefGoogle Scholar
  3. 3.
    Cheng, T.W., Goldgof, D.-B.-., Hall, L.O.: Fast clustering with application to fuzzy rule generation. In: Proc. IEEE Int. Conf. Fuzzy Syst., pp. 2289–2295 (1995)Google Scholar
  4. 4.
    Kolen, J.F., Hutcheson, T.: Reducint the Time Complexity of the Fuzzy CMeans Algorithm. IEEE Transactions onf Fuzzy Systems 10(2), 263–267 (2002)CrossRefGoogle Scholar
  5. 5.
    Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)CrossRefGoogle Scholar
  6. 6.
    Bezdek, J.C., Ehrlich, R., Full, W.: FCM: The Fuzzy C-Means Clustering Algorithm. Computers and Geosciences 10, 191–203 (1984)CrossRefGoogle Scholar
  7. 7.
    Bezdek, J.C.: A Convergence Theorem for the Fuzzy ISODATA Clustering Algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 2(1), 1–8 (1980)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bezdek, J.C., Hathaway, R.J., Sabin, M.J., Tucker, W.T.: Convergence Theory for Fuzzy c-Means: Counterexamples and Repairs. IEEE Transactions on Systems, Man, and Cybernetics 17(5), 873–877 (1987)CrossRefGoogle Scholar
  9. 9.
    Sabin, M.J.: Convergence and Consistency of Fuzzy c-means/ISODATA Algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 9(5), 661–668 (1987)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Jesús Lázaro
    • 1
  • Jagoba Arias
    • 1
  • José L. Martín
    • 1
  • Carlos Cuadrado
    • 1
  1. 1.Escuela Superior de IngenierosUniversity of the Basque CountryBilbaoSpain

Personalised recommendations