The GMD Data Model for Multidimensional Information: A Brief Introduction

  • Enrico Franconi
  • Anand Kamble
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2737)


In this paper we introduce a novel data model for multidimensional information, GMD, generalising the MD data model first proposed in Cabibbo et al (EDBT-98). The aim of this work is not to propose yet another multidimensional data model, but to find the general precise formalism encompassing all the proposals for a logical data model in the data warehouse field. Our proposal is compatible with all these proposals, making therefore possible a formal comparison of the differences of the models in the literature, and to study formal properties or extensions of such data models. Starting with a logic-based definition of the semantics of the GMD data model and of the basic algebraic operations over it, we show how the most important approaches in DW modelling can be captured by it. The star and the snowflake schemas, Gray’s cube, Agrawal’s and Vassiliadis’ models, MD and other multidimensional conceptual data can be captured uniformly by GMD. In this way it is possible to formally understand the real differences in expressivity of the various models, their limits, and their potentials.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, R., Gupta, A., Sarawagi, S.: Modeling multidimensional databases. In: Proc. of ICDE 1997 (1997)Google Scholar
  2. 2.
    Cabibbo, L., Torlone, R.: A logical approach to multidimensional databases. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377. Springer, Heidelberg (1998)Google Scholar
  3. 3.
    Franconi, E., Sattler, U.: A data warehouse conceptual data model for multidimensional aggregation. In: Proc. of the Workshop on Design and Management of Data Warehouses, DMDW 1999 (1999)Google Scholar
  4. 4.
    Franconi, E., Kamble, A.S.: The GMD data model for multidimensional information. Technical report, Free University of Bozen-Bolzano, Italy (2003) (Forthcoming)Google Scholar
  5. 5.
    Golfarelli, M., Maio, D., Rizzi, S.: The dimensional fact model: a conceptual model for data warehouses. IJCIS 7(2-3), 215–247 (1998)Google Scholar
  6. 6.
    Gray, J., Bosworth, A., Layman, A., Pirahesh, H.: Data cube: a relational aggregation operator generalizing group-by, cross-tabs and subtotals. In: Proc. of ICDE 1996 (1996)Google Scholar
  7. 7.
    Gyssens, M., Lakshmanan, L.V.S.: A foundation for multi-dimensional databases. In: Proc. of VLDB 1997, pp. 106–115 (1997)Google Scholar
  8. 8.
    Tsois, A., Karayiannidis, N., Sellis, T.: MAC: Conceptual data modelling for OLAP. In: Proc. of the International Workshop on Design and Management of Warehouses (DMDW 2001), pp. 5–1–5–13 (2001)Google Scholar
  9. 9.
    Vassiliadis, P.: Modeling multidimensional databases, cubes and cube operations. In: Proc. of the 10th SSDBM Conference, Capri, Italy (July 1998)Google Scholar
  10. 10.
    Vassiliadis, P., Sellis, T.: A survey of logical models for OLAP databases. SIGMOD Record 28, 64–69 (1999)CrossRefGoogle Scholar
  11. 11.
    Vassiliadis, P., Skiadopoulos, S.: Modelling and optimisation issues for multidimensional databases. In: Wangler, B., Bergman, L.D. (eds.) CAiSE 2000. LNCS, vol. 1789, pp. 482–497. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Enrico Franconi
    • 1
  • Anand Kamble
    • 1
  1. 1.Faculty of Computer ScienceFree Univ. of Bozen-BolzanoItaly

Personalised recommendations