Advertisement

Building Conceptual Schemas by Refining General Ontologies

  • Jordi Conesa
  • Xavier de Palol
  • Antoni Olivé
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2736)

Abstract

In practice, most conceptual schemas of information systems and databases are developed essentially from scratch. This paper deals with a new approach to that development, consisting on the refinement of a general ontology. We identify and characterize the three activities required to develop a conceptual schema from a general ontology, that we call refinement, pruning and refactoring. The focus of the paper is on the differences of the new approach with respect to the traditional one. The pruning activity may be automated. We formalize it and present a method for its realization. Besides, we identify a particular problem that appears during the refactoring activity, determining whether two types are redundant, and provide two sufficient conditions for it. We illustrate the approach with the development of a conceptual schema by refinement of the Cyc ontology. However, our results apply to any general ontology. The conceptual modeling language we have used is the UML, but we believe that our results could be applied to any similar language.

Keywords

General Ontology Information System Conceptual Schema Entity Type Integrity Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Batini, C., Ceri, S., Navathe, S.B.: Conceptual Database Design. In: An Entity-relationship Approach, p. 470. The Benjamin/Cummings Publishing Co. (1992)Google Scholar
  2. 2.
    Bouzeghoub, M., Kekad, Z., Métais, E.: CASE Tools: Computer Support for Conceptual Modeling. In: Piattini, M., Díaz, O. (eds.) Advanced Database Technology and Design, Artech House (2000)Google Scholar
  3. 3.
    Calvanese, D., Lenzerini, M., Nardi, D.: Description Logics for Conceptual Data Modeling. In: Chomicki, J., Saake, G. (eds.) Logics for Databases and IS, pp. 229–263. Kluwer, Dordrecht (1998)Google Scholar
  4. 4.
    Castano, S., De Antonellis, V., Zonta, B.: Classifying and Reusing Conceptual Schemas. In: Pernul, G., Tjoa, A.M. (eds.) ER 1992. LNCS, vol. 645, pp. 121–138. Springer, Heidelberg (1992)Google Scholar
  5. 5.
    Conesa, J., de Palol, X.: A Case Study on Building Conceptual Schemas by Refining General Ontologies. In: UPC (2003), http://www.lsi.upc.es/~jconesa/casestudy.html
  6. 6.
    Fowler, M.: Refactoring. Improving the Design of Existing Code. Addison-Wesley, Reading (2000)Google Scholar
  7. 7.
    Gibson, M.D., Conheeney, K.: Domain Knowledge Reuse During Requirements Engineering. In: Iivari, J., Rossi, M., Lyytinen, K. (eds.) CAiSE 1995. LNCS, vol. 932, pp. 283–296. Springer, Heidelberg (1995)Google Scholar
  8. 8.
    Guarino, N.: Formal Ontology and Information Systems. In: FOIS 1998, pp. 3–15. IOS Press, Amsterdam (1998)Google Scholar
  9. 9.
    Larman, C.: Applying UML and Patterns, 2nd edn. Prentice Hall, Englewood Cliffs (2002)Google Scholar
  10. 10.
    Lenat, D.B., Guha, R.V., Pittman, K., Pratt, D., Shepherd, M.: CYC: Towards Programs with Common Sense. Comm. ACM 33(8), 30–49Google Scholar
  11. 11.
    Lloyd-Williams, M.: Exploiting domain knowledge during the automated design of O-O databases. In: Embley, D.W. (ed.) ER 1997. LNCS, vol. 1331, pp. 16–29. Springer, Heidelberg (1997)Google Scholar
  12. 12.
    Mili, H., Mili, F., Mili, A.: Reusing Software: Issues and Research Directions. IEEE TSE 21(6), 528–562Google Scholar
  13. 13.
    Olivé, A.: An Introduction to Conceptual Modeling of Information Systems. In: Piattini, M., Díaz, O. (eds.) Advanced Database Technology and Design, Artech House (2000)Google Scholar
  14. 14.
    OMG. Unified Modeling Language Specification, Version 1.4 (September 2001), http://www.omg.org/technology/documents/formal/uml.htm
  15. 15.
  16. 16.
    Peterson, B.J., Andersen, W.A., Engel, J.: Knowledge Bus: Generating Applicationfocused Databases from Large Ontologies. In: Proc. 5th KRDB Worshop, Seattle, WA (1998)Google Scholar
  17. 17.
    Ruggia, R., Ambrosio, A.P.: A Toolkit for Reuse in Conceptual Modelling. In: Olivé, À., Pastor, J.A. (eds.) CAiSE 1997. LNCS, vol. 1250, pp. 173–186. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  18. 18.
    Storey, V., Chiang, R., Dey, D., Goldstein, R., Sundaresan, S.: Database Design with Common Sense Business Reasoning and Learning. ACM TODS 22(4), 471–512 (1997)CrossRefGoogle Scholar
  19. 19.
    Swartout, B., Patil, R., Knight, K., Russ, T.: Toward Distributed Use of Large-Scale Ontologies. In: Proc. 10th KAW, Canada (1996)Google Scholar
  20. 20.
    Uschold, M., Gruninger, M.: Ontologies: principles, methods and applications. The Knowledge Engineering Review 11(2), 93–136 (1996)CrossRefGoogle Scholar
  21. 21.
    Wouters, C., Dillon, T., Rahayu, W., Chang, E.: A Practical Walkthrough of the Ontology Derivation Rules. In: Hameurlain, A., Cicchetti, R., Traunmüller, R. (eds.) DEXA 2002. LNCS, vol. 2453, pp. 259–268. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Jordi Conesa
    • 1
  • Xavier de Palol
    • 1
  • Antoni Olivé
    • 1
  1. 1.Departament de Llenguatges i Sistemes InformàticsUniversitat Politècnica CatalunyaBarcelona (Catalonia)

Personalised recommendations