Selfreparing Neural Networks: A Model for Recovery from Brain Damage

  • Jaap M. J. Murre
  • Robert Griffioen
  • I. H. Robertson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2774)

Abstract

We introduce selfrepairing neural networks as a model for recovery from brain damage. Small lesions are repaired through reinstatement of the redundancy in the network’s connections. With mild lesions, this process can model autonomous recovery. Moderate lesions require patterned input. In this paper, we discuss implementations in three types of network of increasing biological plausibility. We also mention some results from random graph theory. Finally, we discuss the implications for rehabilitation theory.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Robertson, I.H., Murre, J.M.J.: Rehabilitation of brain damage: brain plasticity and principles of guided recovery. Psychological Bulletin 125, 544–575 (1999)CrossRefGoogle Scholar
  2. 2.
    Luria, A.R.: Restoration of function after brain injury. Pergamon, Oxford (1963)Google Scholar
  3. 3.
    Luria, A.R., Naydin, V.L., Tsvetkova, L.S., Vinarskaya, E.N.: Restoration of higher cortical functions following local brain damage. In: Vinken, P.J., Bruyn, G.W. (eds.) Handbook of clinical neurology, vol. 3, pp. 368–433. Elsevier, New York (1975)Google Scholar
  4. 4.
    Ayala, F.J., Kigger, J.A.: Modern genetics. Benjamin/Cummings, Menlo Park (1982)Google Scholar
  5. 5.
    White, O.J., Eisen, A., Heidelberg, J.F., Hickey, E.K., Peterson, J.D., Dodson, R.J., Haft, D.H., Gwinn, M.L., Nelson, W.C., Richardson, D.L., Moffat, K.S., Qin, H., Jiang, L., Pamphile, W., Crosby, M., Shen, M., Vamathevan, P., Lam, L., McDonald, T., Utterback, C., Zalewski, K.S., Makarova, J.J., Aravind, L.: Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 286, 1571–1577 (1999)CrossRefGoogle Scholar
  6. 6.
    Cotman, C.W., Nieto-Sampedro, M.: Brain Function, synapse renewal, and plasticity. Annual Review Psychology 33, 371–401 (1982)CrossRefGoogle Scholar
  7. 7.
    Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. In: Proceedings of the National Academy of Sciences USA, vol. 79, pp. 2554–2558 (1982)Google Scholar
  8. 8.
    Murre, J.M.J.: TraceLink: a model of amnesia and consolidation of memory. Hippocampus 6, 675–684 (1996)CrossRefGoogle Scholar
  9. 9.
    Erdös, P., Rényi, A.: On random graphs I. Publ. Math. Debrecen 6, 290–297 (1959)MATHMathSciNetGoogle Scholar
  10. 10.
    Bollobás, B.: Random Graphs. Academic Press, London (1985)MATHGoogle Scholar
  11. 11.
    MacGregor, R.J., Oliver, R.M.: A model for repetetive firing in neurons. Cybernetik 16, 53–64 (1974)CrossRefGoogle Scholar
  12. 12.
    Hodgkin, A.L., Huxley, A.F.: A quantitative description of ion currents and its application to conduction and excitation in nerve membranes. In: Journal Physiology, London, vol. 117 (1952)Google Scholar
  13. 13.
    Singer, W.: Ontogenetic self-organization and learning. In: McGaugh, J.L., Weinberger, N.M., Lynch, G. (eds.) Brain organization and memory: cells, systems, and circuits, pp. 211–233. Oxford University Press, Oxford (1990)Google Scholar
  14. 14.
    Hopfield, J.J., Feinstein, D.I., Palmer, R.G.: Unlearning’ has a stabilizing effect in collective memories. Nature 304, 158–159 (1983)CrossRefGoogle Scholar
  15. 15.
    Crick, F., Mitchison, G.: The function of dream sleep. Nature 304, 111–114 (1983)CrossRefGoogle Scholar
  16. 16.
    McClelland, J.L., McNaughton, B.L., O’Reilly, R.C.: Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychological Review 102, 419–457 (1995)CrossRefGoogle Scholar
  17. 17.
    Nadel, et al.: (2001)Google Scholar
  18. 18.
    Alvarez, R., Squire, R.L.: Memory consolidation and the medial temporal lobe: a simple network model. In: Proceedings of National Academy of Sciences, USA, vol. 91, pp. 7041–7045 (1994)Google Scholar
  19. 19.
    Wilson, M.A., McNaughton, B.L.: Reactivation of hippocampal ensemble memories during sleep. Science 255, 676–679 (1994)CrossRefGoogle Scholar
  20. 20.
    Finger, S., Stein, D.G.: Brain damage and recovery: Research and clinical perspectives. Academic Press, New York (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Jaap M. J. Murre
    • 1
    • 2
  • Robert Griffioen
    • 1
  • I. H. Robertson
    • 3
  1. 1.University of AmsterdamAmsterdamThe Netherlands
  2. 2.University of MaastrichtThe Netherlands
  3. 3.Trinity CollegeIreland

Personalised recommendations