Functional Imaging of Tinnitus: Seeing of the Unseeable!

  • Ali A. Danesh
  • Yohsuke Kinouchi
  • Deena L. Wener
  • Abhijit Pandya
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2774)


Tinnitus is the perception of sound, with no external origin, in the ears or head. There are millions of people across the globe who suffers from this irritating condition. This article discusses different types of neuroimaging techniques in the study of tinnitus. It is shown that nuclear medicine and neuroradiologic approaches such as Positron Emission Tomography (PET) and functional Magnetic Resonance Imaging (fMRI) are helpful in the demonstration of brain activity in individuals with tinnitus. These techniques have been used to demonstrate tinnitus-related activity (TRA) in individuals with tinnitus who can alter or modify their tinnitus. It is hoped that these techniques will increase our understanding regarding the nature of tinnitus and its possible treatments.


Positron Emission Tomography Single Photon Emission Compute Tomography Inferior Colliculus Magn Reson Image Functional Magnetic Resonance Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cacace, A.T., Parnes, S.M., Lovely, T.J., Winter, D.F., McFarland, D.J.: Gaze-evoked tinnitus following unilateral peripheral auditory deafferentation: a case for anomalous cross-modal plasticity. In: Salvi, R., Henderson, D., Fiorino, F., Colletti, V. (eds.) Auditory System Plasticity and Regeneration, pp. 354–358. Thieme Medical Publishers, New York (1996)Google Scholar
  2. 2.
    Cacace, A.T., Cousins, J.P., Moonen, C.T.W., Van Gelderen, P., Parnes, S.M., Lovely, T.J.: Advances in the development of an objective tinnitus measurement tool: Use of functional magnetic resonance imaging (fMRI) (1997), Abstract available from
  3. 3.
    Cacace, A.T., Cousins, J.P., Parnes, S.M., Semenoff, D., Holmes, T., McFarland, D.J., Davenport, C., Stegbauer, K., Lovely, T.J.: Cutaneous-evoked tinnitus. I. Phenomenology, psychophysics and functional imaging. Audiol. Neurootol. 4(5), 247–257 (1999a)Google Scholar
  4. 4.
    Cacace, A.T., Cousins, J.P., Parnes, S.M., McFarland, D.J., Semenoff, D., Holmes, T., Davenport, C., Stegbauer, K., Lovely, T.J.: Cutaneous-evoked tinnitus. II. Review of neuroanatomical, physiological and functional imaging studies. Audiol. Neurootol. 4(5), 258–268 (1999b)CrossRefGoogle Scholar
  5. 5.
    Lockwood, A.H., Salvi, R.J., Coad, M.L., Towsley, M.L., Wack, D.S., Murphy, B.W.: The functional neuroanatomy of tinnitus: evidence for limbic system links and neural plasticity. Neurology 50(1), 114–120 (1998)Google Scholar
  6. 6.
    Lockwood, A.H., Salvi, R.J., Burkard, R.F.: Current Concepts: Tinnitus. N. Engl. J. Med. 347, 904–910 (2002)CrossRefGoogle Scholar
  7. 7.
    Pinchoff, R.J., Burkard, R.F., Salvi, R.J., Coad, M.L., Lockwood, A.H.: Modulation of Tinnitus by Voluntary Jaw Movements. Am. J. Otol. 19, 785–789 (1998)Google Scholar
  8. 8.
    Coad, M.L., Lockwood, A., Salvi, R., Burkrd, R.: Characteristics of patients with gaze-evoked tinnitus. Otol. Neurotol. 22(5), 650–654 (2001)CrossRefGoogle Scholar
  9. 9.
    Elliot, L.L.: Functional brain imaging and hearing. J. Acoust. Soc. Amer. 96(3), 397–1408 (1994)CrossRefGoogle Scholar
  10. 10.
    Lockwood, A.H., Salvi, R.J., Burkard, R.F., Galantowicz, P.J., Coad, M.L., Wack, D.S.: Neuroanatomy of tinnitus. Scand. Audiol. Suppl. 51, 47–52 (1999)Google Scholar
  11. 11.
    Lockwood, A.H., Wack, D.S., Burkard, R.F., Coad, M.L., Reyes, S.A., Arnold, S.A., Salvi, R.J.: The functional anatomy of gaze-evoked tinnitus and sustained lateral gaze. Neurology 56(4), 472–480 (2001)Google Scholar
  12. 12.
    Giraud, A.L., Chery-Croze, S., Fischer, G., Fischer, C., Vighetto, A., Gregoire, M.C., Lavenne, F., Collet, L.: A selective imaging of tinnitus. Neuroreport (1999) 10(1), 1–5 (1999)Google Scholar
  13. 13.
    Mirz, F., Pedersen, B., Ishizu, K., Johannsen, P., Ovesen, T., Stodkilde- Jorgensen, H., Gjedde, A.: Positron emission tomography of cortical centers of tinnitus. Hear. Res. 134(1-2), 133–144 (1999)CrossRefGoogle Scholar
  14. 14.
    Melcher, J.R., Sigalovsky, I.S., Guinan Jr., J.J., Levine, R.A.: Lateralized tinnitus studied with functional magnetic resonance imaging: abnormal inferior colliculus activation. J. Neurophysiol. 83(2), 1058–1072 (2000)Google Scholar
  15. 15.
    Reyes, S.A., Salvi, R.J., Burkard, R.F., Coad, M.L., Wack, D.S., Galantowicz, P.J., Lockwood, A.H.: Brain imaging of the effects of lidocaine on tinnitus. Hear. Res. 171(1-2), 43–50 (2002)CrossRefGoogle Scholar
  16. 16.
    Cacace, A.T.: Expanding the biological basis of tinnitus: crossmodal origins and the role of neuroplasticity. Hear. Res. 175(1-2), 112–132 (2003)CrossRefGoogle Scholar
  17. 17.
    McJury, M., Shellock, F.G.: Auditory noise associated with MR procedures: a review. J. Magn. Reson. Imaging 12(1), 37–45 (2000) (Review)Google Scholar
  18. 18.
    Foster, J.R., Hall, D.A., Summerfield, A.Q., Palmer, A.R., Bowtell, R.W.: Sound-level measurements and calculations of safe noise dosage during EPI at 3 T. J. Magn. Reson. Imaging 12(1), 157–163 (2000)CrossRefGoogle Scholar
  19. 19.
    Guimaraes, A.R., Melcher, J.R., Talavage, T.M., Baker, J.R., Ledden, P., Rosen, B.R., Kiang, N.Y., Fullerton, B.C., Weisskoff, R.M.: Imaging subcortical auditory activity in humans. Hum. Brain Mapp. 6(1), 33–41 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Ali A. Danesh
    • 1
  • Yohsuke Kinouchi
    • 2
  • Deena L. Wener
    • 1
  • Abhijit Pandya
    • 1
  1. 1.Florida Atlantic UniversityBoca RatonUSA
  2. 2.The University of TokushimaTokushima-shiJapan

Personalised recommendations