The rapidly expanding market for Spatial Data Mining systems and technologies is driven by pressure from the public sector, environmental agencies and industry to provide innovative solutions to a wide range of different problems. The main objective of the described spatial data mining platform is to provide an open, highly extensible, n-tier system architecture based on Java 2 Platform, Enterprise Edition (J2EE). The data mining functionality is distributed among (i) Java client application for visualization and workspace management, (ii) application server with Enterprise Java Bean (EJB) container for running data mining algorithms and workspace management, and (iii) spatial database for storing data and spatial query execution.


Geographic Information System Geographic Information System Enterprise Architecture Data Mining Algorithm Data Mining Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andrienko, N., Andrienko, G., Savinov, A., Wettschereck, D.: Descartes and Kepler for Spatial Data Mining. ERCIM News (40), 44–45 (2000)Google Scholar
  2. 2.
    Andrienko, N., Andrienko, G., Savinov, A., Voss, H., Wettschereck, D.: Exploratory Analysis of Spatial Data Using Interactive Maps and Data Mining. Cartography and Geographic Information Science 28(3), 151–165 (2001)CrossRefGoogle Scholar
  3. 3.
    Ester, M., Frommelt, A., Kriegel, H.P., Sander, J.: Spatial Data Mining: Database Primitives, Algorithms and Efficient DBMS Support. Data Minining and Knowledge Discovery, an International Journal (1999)Google Scholar
  4. 4.
    European IST SPIN!-project web site,
  5. 5.
    JBoss Application Server,
  6. 6.
    Klösgen, W., May, M.: Spatial Subgroup Mining Integrated in an Object-Relational Spatial Database. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS (LNAI), vol. 2431, pp. 275–286. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Klösgen, W., Zytkow, J. (eds.): Handbook of Data Mining and Knowledge Discovery. Oxford University Press, Oxford (2002)zbMATHGoogle Scholar
  8. 8.
    Koperski, K., Adhikary, J., Han, J.: Spatial Data Mining, Progress and Challenges, Vancouver, Canada, Technical Report (1996)Google Scholar
  9. 9.
    Koperski, K., Han, J.: GeoMiner: A System Prototype for Spatial Mining. In: Proceedings ACM-SIGMOD, Arizona (1997)Google Scholar
  10. 10.
    Lisi, F.A., Malerba, D.: SPADA: A Spatial Association Discovery System. In: Zanasi, A., Brebbia, C.A., Ebecken, N.F.F., Melli, P. (eds.) Data Mining III, Series: Management Information Systems, vol. 6, pp. 157–166. WIT Press, Southampton (2002)Google Scholar
  11. 11.
    May, M.: Spatial Knowledge Discovery: The SPIN! System. In: Fullerton, K. (ed.) Proceedings of the 6th EC-GIS Workshop, Lyon, June 28-30, European Commission, JRC, IspraGoogle Scholar
  12. 12.
    May, M., Savinov, A.: An integrated platform for spatial data mining and interactive visual analysis, Data Mining 2002. In: Third International Conference on Data Mining Methods and Databases for Engineering, Finance and Other Fields, Bologna, Italy, September 25-27, pp. 51–60 (2002)Google Scholar
  13. 13.
    Savinov, A.: Mining Interesting Possibilistic Set-Valued Rules. In: Ruan, D., Kerre, E.E. (eds.) Fuzzy If-Then Rules in Computational Intelligence: Theory and Applications, pp. 107–133. Kluwer, Dordrecht (2000)CrossRefGoogle Scholar
  14. 14.
    Savinov, A.: Mining Spatial Rules by Finding Empty Intervals in Data. In: Palade, V., Howlett, R.J., Jain, L. (eds.) KES 2003. LNCS, vol. 2774, Springer, Heidelberg (2003) (accepted)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Michael May
    • 1
  • Alexandr Savinov
    • 1
  1. 1.Fraunhofer Institute for Autonomous Intelligent SystemsSankt-AugustinGermany

Personalised recommendations