Fast Infinite-State Model Checking in Integer-Based Systems

  • Tatiana Rybina
  • Andrei Voronkov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2803)

Abstract

In this paper we discuss the use of logic for reachability analysis for infinite-state systems. Infinite-state systems are formalized using transition systems over a first-order structure. We establish a common ground relating a large class of algorithms by analyzing the connections between the symbolic representation of transition systems and formulas used in various reachability algorithms. We consider in detail the so-called guarded assignment systems and local reachability algorithms. We show how an implementation of local reachability algorithms and a new incremental algorithm for finding Hilbert’s base in the system BRAINresulted in much faster reachability checking than in systems using constraint libraries and decision procedures for Presburger’s arithmetic. Experimental results demonstrate that problems in protocol verification which are beyond the reach of other existing systems can be solved completely automatically.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.-K.: Algorithmic analysis of programs with well quasi-ordered domains. Information and Computation 160(1-2), 109–127 (2000)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Abdulla, P.A., Jonsson, B.: Ensuring completeness of symbolic verification methods for infinite-state systems. Theoretical Computer Science 256, 145–167 (2001)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Ajili, F., Contejean, E.: Avoiding slack variables in the solving of linear Diophantine equations and inequations. Theoretical Computer Science 173(1), 183–208 (1997)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Beltyukov, A.P.: Decidability of the universal theory of natural numbers with addition and divisibility (in Russian). Zapiski Nauchnyh Seminarov LOMI 60, 15–28 (1976); English translation in Journal of Soviet MathematicsGoogle Scholar
  5. 5.
    Bjørner, N.S.: Integrating Decision Procedures for Temporal Verification. PhD thesis, Computer Science Department, Stanford University (1998)Google Scholar
  6. 6.
    Bjørner, N.S.: Reactive verification with queues. In: ARO/ONR/NSF/DARPA Workshop on Engineering Automation for Computer-Based Systems, Carmel, CA, pp. 1–8 (1998)Google Scholar
  7. 7.
    Bultan, T.: Action Language: a specification language for model checking reactive systems. In: ICSE 2000, Proceedings of the 22nd International Conference on Software Engineering, Limerick, Ireland, pp. 335–344. ACM, New York (2000)CrossRefGoogle Scholar
  8. 8.
    Bultan, T., Gerber, R., Pugh, W.: Model-checking concurrent systems with unbounded integer variables: symbolic representations, approximations, and experimental results. ACM Transactions on Programming Languages and Systems 21(4), 747–789 (1999)CrossRefGoogle Scholar
  9. 9.
    Contejean, E., Devie, H.: An efficient incremental algorithm for solving of systems of linear Diophantine equations. Information and Computation 113(1), 143–172 (1994)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Delzanno, G.: Automatic verification of parametrized cache coherence protocols. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 53–68. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Delzanno, G., Podelski, A.: Constraint-based deductive model checking. International Journal on Software Tools for Technology Transfer 3(3), 250–270 (2001)MATHGoogle Scholar
  12. 12.
    Emerson, E.A., Clarke, E.M.: Using branching time temporal logic to synthesize synchronization skeletons. Science of Computer Programming 2(3), 241–266 (1982)MATHCrossRefGoogle Scholar
  13. 13.
    Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In: 14th Annual IEEE Symposium on Logic in Computer Science (LICS 1999), Trento, Italy, pp. 352–359. IEEE Computer Society, Los Alamitos (1999)Google Scholar
  14. 14.
    Halbwachs, N., Proy, Y.-E., Roumanoff, P.: Verification of real-time systems using linear relation analysis. Formal Methods in System Design 11(2), 157–185 (1997)CrossRefGoogle Scholar
  15. 15.
    Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: Hy-Tech: a model checker for hybrid systems. International Journal on Software Tools for Technology Transfer 1(1–2), 110–122 (1997)MATHGoogle Scholar
  16. 16.
    Henzinger, T.A., Majumdar, R.: A classification of symbolic state transition systems. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 13–34. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Hilbert, D.: über die Theorie der algebraischen Formen. Mathematische Annalen 36, 473–534 (1890)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Kanellakis, P., Kuper, G.M., Revesz, P.Z.: Constraint query languages. Journal of Computer and System Sciences 51, 26–52 (1995)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Kesten, Y., Maler, O., Marcus, M., Pnueli, A., Shahar, E.: Symbolic model checking with rich assertional languages. Theoretical Computer Science 256(1-2), 93–112 (2001)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Kupferman, O., Vardi, M.: Model checking of safety properties. Formal Methods in System Design 19(3), 291–314 (2001)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Lafferriere, G., Pappas, G.J., Yovine, S.: Symbolic reachability computation for families of linear vector fields. Journal of Symbolic Computations 32(3), 231–253 (2001)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Lipshitz, L.: The Diophantine problem for addition and divisibility. Transactions of the American Mathematical Society 235, 271–283 (1978)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Mart’janov, V.I.: Universal extended theories of integers. Algebra i Logika 16(5), 588–602 (1977)MathSciNetGoogle Scholar
  24. 24.
    Podelski, A.: Model checking as constraint solving. In: Palsberg, J. (ed.) SAS 2000. LNCS, vol. 1824, pp. 22–37. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  25. 25.
    Pugh, W.: Counting solutions to Presburger formulas: how and why. ACM SIGPLAN Notices 29(6), 121–134 (1994); Proceedings of the ACM SIGPLAN 1994 Conference on Programming Languages Design and Implementation (PLDI) (1994)CrossRefGoogle Scholar
  26. 26.
    Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems in Cesar. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming 1982. LNCS, vol. 137, pp. 337–351. Springer, Heidelberg (1982)Google Scholar
  27. 27.
    Rybina, T., Voronkov, A.: Using canonical representations of solutions to speed up infinitestate model-checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, p. 386. Springer, Heidelberg (2002) (to appear)CrossRefGoogle Scholar
  28. 28.
    Schrijver, A.: Theory of Linear and Integer Programming. John Wiley and Sons, Chichester (1998)MATHGoogle Scholar
  29. 29.
    Tomás, A.P., Filgueiras, M.: An algorithm for solving systems of linear diophantine equations in naturals. In: Costa, E. (ed.) EPIA 1997. LNCS, vol. 1323, pp. 73–84. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  30. 30.
    Voronkov, A.: An incremental algorithm for finding the basis of solutions to systems of linear Diophantine equations and inequations (January 2003) (unpublished)Google Scholar
  31. 31.
    Warren, D.S.: Memoing for logic programs. Communications of the ACM 35(3), 93–111 (1992)CrossRefGoogle Scholar
  32. 32.
    Yavuz-Kahveci, T., Tuncer, M., Bultan, T.: A library for composite symbolic representations. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 52–66. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Tatiana Rybina
    • 1
  • Andrei Voronkov
    • 1
  1. 1.University of Manchester 

Personalised recommendations