Complexity of Some Problems in Modal and Intuitionistic Calculi

  • Larisa Maksimova
  • Andrei Voronkov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2803)


Complexity of provability and satisfiability problems in many non-classical logics, for instance, in intuitionistic logic, various systems of modal logic, temporal and dynamic logics was studied in [3, 5, 9, 22, 23, 24]. Ladner [9] proved that the provability problem is \(\textsf{\textup{PSPACE}}\)-complete for modal logics K, T and S4 and \(\textsf{\textup{coNP}}\)-complete for S5. Statman [24] proved that the problem of determining if an arbitrary implicational formula is intuitionistically valid is \(\textsf{\textup{PSPACE}}\)-complete.

We consider the complexity of some properties for non-classical logics which are known to be decidable. The complexity of tabularity, pre-tabularity, and interpolation problems in extensions of the intuitionistic logic and of the modal logic S4 is studied, as well as the complexity of amalgamation problems in varieties of Heyting algebras and closure algebras.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avellone, A., Ferrari, M., Miglioli, P.: Duplication-free tableau calculi and related cut-free sequent calculi for the interpolable propositional intermediate logics. Logic Journal of the IGPL 7(4), 447–480 (1999)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Chagrov, A., Zakharyaschev, M.: Modal Logic. Clarendon Press, Oxford (1997)MATHGoogle Scholar
  3. 3.
    Fisher, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. Journal of Computer and System Sciences 18(2), 194–211 (1979)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Boolos, G.: On systems of modal logic with provability interpretations. Theoria 45(1), 7–18 (1980)MathSciNetGoogle Scholar
  5. 5.
    Halpern, J.Y., Moses, Y.: A guide to completeness and complexity for modal logics of knowledge and belief. Artificial Intelligence 54, 319–379 (1992)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Hosoi, T., Ono, H.: Intermediate propositional logics. a survey. J. of Tsuda College 5, 67–82 (1963)MathSciNetGoogle Scholar
  7. 7.
    Johnson, D.S.: A catalog of complexity classes. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. A, ch. 8, pp. 67–161. Elsevier, Amsterdam (1990)Google Scholar
  8. 8.
    Kuznetsov, A.V.: Some properties of the lattice of varieties of pseudo-boolean algebras. In: 11th Sovjet Algebraic Colloquium, Abstracts, Kishinev, pp. 255–256 (1971)Google Scholar
  9. 9.
    Ladner, R.E.: The computational complexity of provability in systems of modal prepositional logic. SIAM Journal of Computing 6(3), 467–480 (1977)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Maksimova, L.L.: Pretabular superintuitionistic logics. Algebra and Logic 11(5), 558–570 (1972)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Maksimova, L.L.: Modal logics of finite slices. Algebra and Logic 14(3), 304–319 (1975)MathSciNetGoogle Scholar
  12. 12.
    Maksimova, L.L.: Pretabular extensions of Lewis’ logic S4. Algebra and Logic 14(1), 28–55 (1975)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Maksimova, L.L.: Craig’s theorem in superintuitionistic logics and amalgamable varieties of pseudoboolean algebras. Algebra and Logic 16(6), 643–681 (1977)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Maksimova, L.L.: Interpolation theorems in modal logics and amalgamable varieties of topoboolean algebras. Algebra and Logic 18(5), 556–586 (1979)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Maksimova, L.L.: On a classification of modal logics. Algebra and Logic 18(3), 328–340 (1979)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Maksimova, L.L.: Interpolation theorems in modal logic: Sufficient conditions. Algebra and Logic 19(2), 194–213 (1980)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Maksimova, L.L.: Absence of interpolation in modal companions of Dummett’s logic. Algebra and Logic 21, 690–694 (1982)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Maksimova, L.L.: Amalgamation and interpolation in normal modal logics. Studia Logica 50(3/4), 457–471 (1991)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Maksimova, L.L., Rybakov, V.V.: On a lattice of normal modal logics. Algebra and Logic 13, 188–216 (1974)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Miura, S.: A remark on the intersection of two logics. Nagoya Math. Journal 26, 167–171 (1966)MATHMathSciNetGoogle Scholar
  21. 21.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)MATHGoogle Scholar
  22. 22.
    Pratt, V.R.: Models of program logics. In: Proceedings 20th IEEE Symposium on Foundations of Computer Science, pp. 115–122 (1979)Google Scholar
  23. 23.
    Spaan, E.: Complexity of Modal Logics. PhD thesis, Institute for Logic, Language and Computation, University of Amsterdam (1992)Google Scholar
  24. 24.
    Statman, R.: Intuitionistic propositional logic is polynomial-space complete. Theoretical Computer Science 9, 67–72 (1979)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Yankov, V.A.: On the calculus of weak low of excluded middle. Izvestia Academii Nauk SSSR, Ser. math. 32(5), 1044–1051 (1968)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Larisa Maksimova
    • 1
  • Andrei Voronkov
    • 2
  1. 1.Institute of MathematicsNovosibirsk
  2. 2.University of Manchester 

Personalised recommendations