Advertisement

Clocks as First Class Abstract Types

  • Jean-Louis Colaço
  • Marc Pouzet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2855)

Abstract

Clocks in synchronous data-flow languages are the natural way to define several time scales in reactive systems. They play a fundamental role during the specification of the system and are largely used in the compilation process to generate efficient sequential code. Based on the formulation of clocks as dependent types, the paper presents a simpler clock calculus reminiscent to ML type systems with first order abstract types à la Laufer & Odersky. Not only this system provides clock inference, it shares efficient implementations of ML type systems and appears to be expressive enough for many real applications.

Keywords

Type System Boolean Expression Proof Assistant Constant Stream Carrier Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    André, C.: Representation and Analysis of Reactive Behaviors: A Synchronous Approach. In: CESA, Lille, July 1996, IEEE-SMC (2000), Available at www-mips.unice.fr/~andre/synccharts.html
  2. 2.
    Ashcroft, E.A., Wadge, W.W.: Lucid, the data-flow programming language. Academic Press, London (1985)Google Scholar
  3. 3.
    Benveniste, A., LeGuernic, P., Jacquemot, C.: Synchronous programming with events and relations: the SIGNAL language and its semantics. Science of Computer Programming 16, 103–149 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Berry, G.: Real time programming: Special purpose or general purpose languages. Information Processing 89, 11–17 (1989)Google Scholar
  5. 5.
    Berry, G., Gonthier, G.: The Esterel synchronous programming language, design, semantics, implementation. Science of Computer Programming 19(2), 87–152 (1992)zbMATHCrossRefGoogle Scholar
  6. 6.
    Boulmé, S., Hamon, G.: Certifying Synchrony for free. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, p. 495. Springer, Heidelberg (2001); Short version of A clocked denotational semantics for Lucid-Synchrone in Coq, available as a Technical Report (LIP6) at http://www-spi.lip6.fr/lucid-synchrone CrossRefGoogle Scholar
  7. 7.
    Buck, J., Ha, S., Lee, E., Messerschmitt, D.: Ptolemy: A framework for simulating and prototyping heterogeneous systems. International Journal of computer Simulation (1994); special issue on Simulation Software Development Google Scholar
  8. 8.
    Caspi, P.: Clocks in dataflow languages. Theoretical Computer Science 94, 125–140 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Caspi, P., Curic, A., Maignan, A., Sofronis, C., Tripakis, S., Niebert, P.: From Simulink to SCADE/Lustre to TTA: a layered approach for distributed embedded applications. In: LCTES 2003 (2003)Google Scholar
  10. 10.
    Caspi, P., Pouzet, M.: Synchronous Kahn Networks. In: ACM SIGPLAN International Conference on Functional Programming, Philadelphia, Pensylvania (May 1996)Google Scholar
  11. 11.
    Caspi, P., Pouzet, M.: Lucid Synchrone, a functional extension of Lustre (2001) (submitted to publication)Google Scholar
  12. 12.
    Colaço, J.-L., Pouzet, M.: Type-based Initialization of a Synchronous Data-flow Language. In: Synchronous Languages, Applications, and Programming. Electronic Notes in Theoretical Computer Science, vol. 65 (2002)Google Scholar
  13. 13.
    The coq proof assistant (2002), http://coq.inria.fr
  14. 14.
    Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous dataflow programming language lustre. Proceedings of the IEEE 79(9), 1305–1320 (1991)CrossRefGoogle Scholar
  15. 15.
    Kahn, G.: The semantics of a simple language for parallel programming. In: IFIP 74 Congress, North Holland, Amsterdam (1974)Google Scholar
  16. 16.
    Läufer, K., Odersky, M.: An extension of ML with first-class abstract types. In: ACM SIGPLAN Workshop on ML and its Applications, San Francisco, California, June 1992, pp. 78–91 (1992)Google Scholar
  17. 17.
    Leroy, X.: The Objective Caml system release 3.06. Documentation and user’s manual. Technical report, INRIA (2002)Google Scholar
  18. 18.
    Maraninchi, F., Rémond, Y.: Argos: an automaton-based synchronous language. Computer Languages (27), 61–92 (2001)zbMATHCrossRefGoogle Scholar
  19. 19.
    Mauny, M., Pottier, F.: An implementation of Caml Light with existential types. Technical Report 2183, INRIA (October 1993)Google Scholar
  20. 20.
    Milner, R.: A theory of type polymorphism in programming. Journal of Computer and System Science 17, 348–375 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Nowak, D., Beauvais, J.R., Talpin, J.P.: Co-inductive axiomatisation of synchronous language. In: Grundy, J., Newey, M. (eds.) TPHOLs 1998. LNCS, vol. 1479, pp. 387–399. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  22. 22.
    Olendersky, L.: Private communication. In: Workshop Synchron, Toulon, France (December 2002)Google Scholar
  23. 23.
    Pouzet, M.: Lucid Synchrone, version 2. Tutorial and reference manual. Université Pierre et Marie Curie, LIP6 (Mai 2001), Distribution available at http://www-spi.lip6.fr/lucid-synchrone
  24. 24.
    Reynolds, J.C.: Theories of Programming Languages. Cambridge University Press, Cambridge (1998)zbMATHCrossRefGoogle Scholar
  25. 25.
  26. 26.
    Wadler, P., Blott, S.: How to make ad-hoc polymorphism less ad-hoc. In: Conference Record of the 16th Annual ACM Symposium on Principles of Programming Languages, pp. 60–76. ACM, New York (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Jean-Louis Colaço
    • 1
  • Marc Pouzet
    • 2
  1. 1.ESTEREL TechnologiesToulouseFrance
  2. 2.Laboratoire LIP6Université Pierre et Marie CurieParisFrance

Personalised recommendations