Advertisement

Inverse Kinematics for Humanoid Robots Using Artificial Neural Networks

  • Javier de Lope
  • Rafaela González-Careaga
  • Telmo Zarraonandia
  • Darío Maravall
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2809)

Abstract

The area of inverse kinematics of robots, mainly manipulators, has been widely researched, and several solutions exist. The solutions provided by analytical methods are specific to a particular robot configuration and are not applicable to other robots. Apart from this drawback, legged robots are inherently redundant because they need to have real humanoid configurations. This degree of redundancy makes the development of an analytical solution for the inverse kinematics practically unapproachable. For this reason, our proposed method considers the use of artificial neural networks to solve the inverse kinematics of the articulated chain that represents the robot’s legs. Since the robot should always remain stable and never fall, the learning set presented to the artificial neural network can be conveniently filtered to eliminate the undesired robot configurations and reduce the training process complexity.

Keywords

Humanoid Robot Inverse Kinematic Zero Moment Point Roll Axis Postural Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vukobratovic, M., Brovac, B., Surla, D., Sotkic, D.: Biped Locomotion. Springer, Berlin (1990)zbMATHGoogle Scholar
  2. 2.
    Huang, Q., et al.: Planning walking patterns for a biped robot. IEEE Trans. on Robotics and Automation 17(3), 280–289 (2001)CrossRefGoogle Scholar
  3. 3.
    Furuta, T., et al.: Design and construction of a series of compact humanoid robots and development of biped walk control strategies. Robotics and Autonomous Systems 37(2-3), 81–100 (2001)zbMATHCrossRefGoogle Scholar
  4. 4.
    Martinetz, T.M., Ritter, H.J., Schulten, K.J.: Three-dimensional neural net for learning visuomotor coordination of a robot arm. IEEE Trans. on Neural Networks 1(1), 131–136 (1990)CrossRefGoogle Scholar
  5. 5.
    Jordan, M.I., Rumelhart, D.E.: Forward models: Supervised learning with a distal teacher. Cognitive Science 16, 307–354 (1992)CrossRefGoogle Scholar
  6. 6.
    Xia, Y., Wang, J.: A dual network for kinematic control of redundant robot manipulator. IEEE Trans. ond Systems, Man, and Cybernetics – Part B: Cybernetics 31(1), 147–154 (2001)CrossRefGoogle Scholar
  7. 7.
    Kurematsu, Y., Maeda, T., Kitamura, S.: Autonomous trajectory generation of a biped locomotive robot. In: IEEE Int. Conf. on Neural Networks, pp. 1961–1966 (1993)Google Scholar
  8. 8.
    Yamasaki, F., Miyashita, T., Matsui, T., Kitano, H.: PINO, The humanoid that walk. In: Proc. of The First IEEE-RAS Int. Conf. on Humanoid Robots (2000)Google Scholar
  9. 9.
    Zhou, C., Meng, Q.: Dynamic balance of a biped robot using fuzzy reinforcement learning agents. Fuzzy Sets and Systems 134(1), 169–187 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Hirai, K., et al.: The development of Honda humanoid robot. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, pp. 1321–1326 (1998)Google Scholar
  11. 11.
    Espiau, B., Sardain, P.: The antropomorphic biped robot BIP2000. In: Proc. of the IEEE Int. Conf. on Robotics and Automation, pp. 3996–4001 (2000)Google Scholar
  12. 12.
    Kaneko, K., et al.: Design of prototype humanoid robotics platform for HRP. In: Proc. of the IEEE-RSJ Int. Conf. on Intelligent Robots and Systems, pp. 2431–2436 (2002)Google Scholar
  13. 13.
    De Lope, J., Zarraonandia, T., González-Careaga, R., Maravall, D.: Solving the inverse kinematics in humanoid robots: A neural approach. In: Mira, J., Álvarez, J.R. (eds.) IWANN 2003. LNCS, vol. 2687. Springer, Heidelberg (2003) (to appear)CrossRefGoogle Scholar
  14. 14.
    Lee, D.T.: On finding the convex hull of a simple polygon. J. of Algorithms 4, 324–331 (1983)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Javier de Lope
    • 1
  • Rafaela González-Careaga
    • 1
  • Telmo Zarraonandia
    • 1
  • Darío Maravall
    • 1
  1. 1.Department of Artificial IntelligenceFaculty of Computer Science, Universidad Politécnica de MadridMadridSpain

Personalised recommendations