Advertisement

Temporal Data Management and Knowledge Acquisition Issues in Medical Decision Support Systems

  • M. Campos
  • J. Palma
  • B. Llamas
  • A. González
  • M. Menárguez
  • R. Marín
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2809)

Abstract

The development of data-intensive systems in medical domains has received increasing attention in recent years. In this work we present in depth some parts of ACUDES (Architecture for Intensive Care Units Decision Support) in which traditional techniques for managing and representing time have been integrated with a temporal diagnosis task in a decision support platform. ACUDES has been designed to manage the information regarding patient evolution and to describe the patients evolution in terms of the temporal sequence diseases suffered. These functionalities are supported by an ontology which simplifies the knowledge acquisition and sharing, while guaranteeing the semantic consistency of patients’ evolution data. This work will be focused on the Temporal Data Management and the Knowledge Acquisition Tool.

Keywords

Decision Support Temporal Information Management Medical Knowledge Acquisition and Representation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Horn, W.: AI in Medicine on its ways from Knowledge-Intensive Systems to Data- Intensive Systems. Artificial Intelligence in Medicine 23, 5–12 (2001)CrossRefGoogle Scholar
  2. 2.
    Palma, J., Marín, R., Campos, M., Cárceles, A.: ACUDES: Architecture for Intensive Care Units DEcision Support. In: Conference Procceedings of the second joint EMBS-BMES conference, pp. 1938–1939 (2002) ISBN: 0-7803-7613-Google Scholar
  3. 3.
    Campos, M., Cárceles, A., Palma, J., Marín, R.: A general purporse fuzzy temporal information management. In: EurAsia-ICT 2002, Teherán, Irán. Advances in information and communication technology, pp. 93–97 (2002) ISBN: 3-85403-161-3Google Scholar
  4. 4.
    Koubarakis, M., Skiadopoulos, S.: Querying temporal constraint networks in PTIME. In: Proceedings of the 6th National Conference on Artificial Intelligence (AAAI-99), Menlo Park, Cal., pp. 745–750. MIT Press, AAAI/ (1999)Google Scholar
  5. 5.
    Palma, J., Marín, R., Sánchez, J., Palacios, F.: A model-based temporal abductive diagnosis model for an intensive coronary care unit. In: Barro, S., R.M. (eds.) In Fuzzy Logic in Medicine. Studies in Fuzziness and Soft Computing, vol. 83, pp. 205–235 (2002)Google Scholar
  6. 6.
    Barro, S., Marín, R., Mira, R., Patón, J.: A model and a language for the fuzzy representation and handling of time. Fuzzy Sets and Systems 61, 153–175 (1994)CrossRefMathSciNetGoogle Scholar
  7. 7.
    van Beek, P., Cohen, R.: Exact and approximate reasoning about temporal relations. Computational Intelligence 6, 132–144 (1990)CrossRefGoogle Scholar
  8. 8.
    Allen, J.F.: Maintaining knowledge about temporal intervals. In: Brachman, R.J., Levesque, H.J. (eds.) Readings in Knowledge Representation, pp. 509–521. Kaufmann, Los Altos (1985)Google Scholar
  9. 9.
    Marín, R., Barro, S., Palacios, F., Ruiz, R., Martín, F.: An approach to fuzzy temporal reasoninng in medicine. Mathware & soft Computing 3, 265–276 (1994)Google Scholar
  10. 10.
    Brusoni, V., Console, L., Terenziani, P.: Efficient query answering in LaTeR. In: TIME 1995 International Workshop on Temporal Representation and Reasoning, pp. 121–128 (1995)Google Scholar
  11. 11.
    Shahar, Y.: Efficient algorithms for qualitative reasoning about time. Artificial Intelligence 90, 79–133 (1997)zbMATHCrossRefGoogle Scholar
  12. 12.
    Felix, P., Barro, S., Marín, R.: Fuzzy constraint networks for signal pattern recognition. Artificial Intelligence. Special Issue:Fuzzy set and possibility theory-based methods in artificial intelligence (2003) (in press)Google Scholar
  13. 13.
    Palma, J., Marín, R.: Modelling contextual meta-knowledge in model based diagnosis. In: Proceedings of the ECAI-2002, pp. 407–411 (2002)Google Scholar
  14. 14.
    Genneari, J., Musen, M.A., Ferguson, R.W., Grosso, W.E., Crubezy, M., Eriksson, H., Noy, N., Tu, S.W.: The evolution of protégé: An environment for knowledgebased systems development. International Journal of Human-Computer Interaction (2002) (in press)Google Scholar
  15. 15.
    National Library of Medicine: Unified Medical Language System 13 edn. (2002)Google Scholar
  16. 16.
    Tu, S.W., Musen, M.A.: Modelling data and knowledge in the eon guideline architecture. Technical Report SMI-2001-0868, Stanford Medical Informatics (2001), http://www-smi.stanford.edu/pubs/SMI_Reports/SMI-2001-0868.pdf

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • M. Campos
    • 1
  • J. Palma
    • 1
  • B. Llamas
    • 1
  • A. González
    • 1
  • M. Menárguez
    • 1
  • R. Marín
    • 1
  1. 1.Artificial Intelligence and Knowledge Engineering GroupUniversity of MurciaMurciaSpain

Personalised recommendations