Applied Grid Computing: Optimisation of Photonic Devices

  • Duan H. Beckett
  • Ben Hiett
  • Ken S. Thomas
  • Simon J. Cox
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2790)


In this paper, we present an application of grid computing to solve an important industrial problem: that of optimising the band gap of photonic crystals, which are an important technology in future generation telecomms and sensing. The computational power grid enabled months of experimentation to be performed in a weekend. Of particular interest was the necessity to run jobs on both Linux and Windows resources.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Axmann, W., Kuchment, P.: An efficient finite element method for computing spectra of photonic and acoustic band-gap materials – i. scalar case. Journal of Computational Physics 150, 468–481 (1999)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Dobson, D.C.: An efficient method for band structure calculations in 2d photonic crystals. Journal of Computational Physics 149, 363–376 (1999)MATHCrossRefGoogle Scholar
  3. 3.
    Thomas, K.S., Cox, S., Beckett, D., Hiett, B., Generowicz, J., Daniell, G.: Eigenvalue spectrum estimation and photonic crystals. In: 7th International Europar Conference, pp. 578–586. Springer, Heidelberg (2001)Google Scholar
  4. 4.
    Joannopoulos, J., Meade, R., Winn, J.: Photonic Crystals Molding the Flow of Light. Princeton University Press, Princeton (1995)MATHGoogle Scholar
  5. 5.
    University of Southampton: Research support services: Iridis (2002),
  6. 6.
    University of Southampton: Research support services: Condor (2002),
  7. 7.
    Joe, B.: Geompack mesh generating software (2001),
  8. 8.
    Cox, S.J., Dobson, D.C.: Maximizing band gaps in two-dimensional photonic crystals. Siam Journal on Applied Mathematics 59, 2108–2120 (1999)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Cox, S.J., Dobson, D.C.: Band structure optimization of two-dimensional photonic crystals in h-polarization. Journal of Computational Physics 158, 214–224 (2000)MATHCrossRefGoogle Scholar
  10. 10.
    Brent, R.: Algorithms for Minimization Without Derivitives. Prentice Hall, Englewood Cliffs (1973)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Duan H. Beckett
    • 1
  • Ben Hiett
    • 1
  • Ken S. Thomas
    • 1
  • Simon J. Cox
    • 2
  1. 1.Department of Electronics and Computer ScienceUniversity of Southampton
  2. 2.School of Engineering SciencesUniversity of Southampton

Personalised recommendations