GrADSolve – RPC for High Performance Computing on the Grid

  • Sathish Vadhiyar
  • Jack Dongarra
  • Asim YarKhan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2790)


Although high performance computing has been achieved over computational Grids using various techniques, the support for high performance computing on the Grids using Remote Procedure Call (RPC) mechanisms is fairly limited. In this paper, we discuss a RPC system called GrADSolve that supports execution of parallel applications over Grid resources. GrADSolve employs powerful scheduling techniques for dynamically choosing the resources used for the execution of parallel applications and also uses robust data staging mechanisms based on the data distribution used by the end application. Experiments and results are presented to prove that GrADSolve’s data staging mechanisms can significantly reduce the overhead associated with data movement in current RPC systems.


High Performance Computing Parallel Application Grid Resource Execution Trace Data Staging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berman, F., Chien, A., Cooper, K., Dongarra, J., Foster, I., Gannon, D., Johnsson, L., Kennedy, K., Kesselman, C., Mellor-Crummey, J., Reed, D., Torczon, L., Wolski, R.: The GrADS Project: Software Support for High-Level Grid Application Development. International Journal of High Performance Applications and Supercomputing 15(4), 327–344 (Winter 2001)Google Scholar
  2. 2.
    Birrell, A.D., Nelson, B.J.: Implementing Remote Procedure Calls. ACM Transactions on Computer Systems 2(1), 39–59 (1984)CrossRefGoogle Scholar
  3. 3.
    Casanova, H., Dongarra, J.: NetSolve: A Network Server for Solving Computational Science Problems. The International Journal of Supercomputer Applications and High Performance Computing 11(3), 212–223 (Fall 1997)Google Scholar
  4. 4.
  5. 5.
    Denis, A., Pérez, C., Priol, T.: Achieving Portable and Efficient Parallel CORBA Objects. Concurrency and Computation: Practice and Experience (2002)Google Scholar
  6. 6.
    Denis, A., Pérez, C., Priol, T.: Portable Parallel CORBA Objects: an Approach to Combine Parallel and Distributed Programming for Grid Computing. In: Proc. of the 7th International Euro-Pa 2001 Conference (EuroPar 2001), pp. 835–844. Springer, Heidelberg (2001)Google Scholar
  7. 7.
    Foster, I., Kesselman, C. (eds.): The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann, San Francisco (1999) ISBN 1-55860-475-8Google Scholar
  8. 8.
    Foster, I., Kesselman, C.: Globus: A Metacomputing Infrastructure Toolkit. Intl J. Supercomputer Applications 11(2), 115–128 (1997)CrossRefGoogle Scholar
  9. 9.
    Java Remote Method Invocation (Java RMI),
  10. 10.
    Maassen, J., van Nieuwpoort, R., Veldema, R., Bal, H., Kielmann, T., Jacobs, C., Hofman, R.: Efficient Java RMI for Parallel Programming. ACM Transactions on Programming Languages and Systems (TOPLAS) 23(6), 747–775 (2001)CrossRefGoogle Scholar
  11. 11.
    René, C., Priol, T.: MPI Code Encapsulating using Parallel CORBA Object. Cluster Computing 3(4), 255–263 (2000)CrossRefGoogle Scholar
  12. 12.
    Nakada, H., Sato, M., Sekiguchi, S.: Design and Implementations of Ninf: towards a Global Computing Infrastructure. Future Generation Computing Systems, Metascomputing Issue 15(5-6), 649–658 (1999)CrossRefGoogle Scholar
  13. 13.
    Sato, M., Hirano, M., Tanaka, Y., Sekiguchi, S.: OmniRPC: A Grid RPC Facility for Cluster and Global Computing in OpenMP. In: Eigenmann, R., Voss, M.J. (eds.) WOMPAT 2001. LNCS, vol. 2104, p. 130. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Seymour, K., Nakada, H., Matsuoka, S., Dongarra, J., Lee, C., Casanova, H.: Overview of GridRPC: A Remote rocedure Call API for Grid Computing. In: Parashar, M. (ed.) GRID 2002. LNCS, vol. 2536, pp. 274–278. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Simple Object Access Protocol (SOAP),
  16. 16.
    Suzumura, T., Nakagawa, T., Matsuoka, S., Nakada, H., Sekiguchi, S.: Are Global Computing Systems Useful? - Comparison of Client-Server Global Computing Systems Ninf, Netsolve versus CORBA. In: Proceedings of the 14th International Parallel and Distributed Processing Symposium, IPDPS 2000, May 2000, pp. 547–559 (2000)Google Scholar
  17. 17.
    Wolski, R., Spring, N., Hayes, J.: The Network Weather Service: A Distributed Resource Performance forecasting Service for Metacomputing. Journal of Future Generation Computing Systems 15(5-6), 757–768 (1999)CrossRefGoogle Scholar
  18. 18.
  19. 19.
    YarKhan, A., Dongarra, J.: Experiments with Scheduling Using Simulated Annealing in a Grid Environment. In: Parashar, M. (ed.) GRID 2002. LNCS, vol. 2536, pp. 232–242. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Sathish Vadhiyar
    • 1
  • Jack Dongarra
    • 1
  • Asim YarKhan
    • 1
  1. 1.Computer Science DepartmentUniversity of TennesseeKnoxville

Personalised recommendations