Finite Horizon Analysis of Stochastic Systems with the Murφ Verifier

  • Giuseppe Della Penna
  • Benedetto Intrigila
  • Igor Melatti
  • Enrico Tronci
  • Marisa Venturini Zilli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2841)

Abstract

Many reactive systems are actually Stochastic Processes. Automatic analysis of such systems is usually very difficult thus typically one simplifies the analysis task by using simulation or by working on a simplified model (e.g. a Markov Chain).

We present a Finite Horizon Probabilistic Model Checking approachwhich essentially can handle the same class of stochastic processes of a typical simulator. This yields easy modeling of the system to be analysed together with formal verification capabilities. Our approach is based on a suitable disk based extension of the Murφ verifier.

Moreover we present experimental results showing effectiveness of our approach.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apt, K.R., Olderog, E.-R.: Verification of Sequential and Concurrent Programs. Text and Monographs in Computer Science. Springer, Heidelberg (1991)MATHGoogle Scholar
  2. 2.
    Baier, C., Clarke, E.M., Hartonas-Garmhausen, V., Kwiatkowska, M., Ryan, M.: Symbolic model checking for probabilistic processes. Automata, Languages and Programming, 430–440 (1997)Google Scholar
  3. 3.
    Behrends, E.: Introduction to Markov Chains. Vieweg (2000)Google Scholar
  4. 4.
    Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513. Springer, Heidelberg (1995)Google Scholar
  5. 5.
    Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model checking: 1020 states and beyond. Information and Computation 98 (1992)Google Scholar
  6. 6.
    Courcoubetis, C., Yannakakis, M.: Verifying temporal properties of finite-state probabilistic programs. In: Proc. of FOCS 1988, pp. 338–345. IEEE CS Press, Los Alamitos (1988)Google Scholar
  7. 7.
    Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J. ACM 42(4), 857–907 (1995)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    de Alfaro, L.: Formal verification of performance and reliability of real-time systems. Technical report, Stanford University (1996)Google Scholar
  9. 9.
    Dill, D.L., Drexler, A.J., Hu, A.J., Yang, C.H.: Protocol verification as a hardware design aid. In: IEEE International Conference on Computer Design: VLSI in Computers and Processors, pp. 522–525 (1992)Google Scholar
  10. 10.
    Hermanns, H., Infante Lopez, G.G., Katoen, J.: Beyond memoryless distribution: Model checking semi-markov chains. In: de Luca, L., Gilmore, S. (eds.) PROBMIV 2001, PAPM-PROBMIV 2001, and PAPM 2001. LNCS, vol. 2165, pp. 57–70. Springer, Heidelberg (2001)Google Scholar
  11. 11.
    Hansson, H.: Time and Probability in Formal Design of Distributed Systems. Elsevier, Amsterdam (1994)Google Scholar
  12. 12.
    Hansson, H., Jonsson, B.: A logic for reasoning about time and probability. Formal Aspects of Computing 6, 512–535 (1994)MATHCrossRefGoogle Scholar
  13. 13.
    Holzmann, G.J.: Design and Validation of Computer Protocols. Prentice Hall, New Jersey (1991)Google Scholar
  14. 14.
    Holzmann, G.J.: The spin model checker. IEEE Trans. on Software Engineering 23(5), 279–295 (1997)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic symbolic model checker. In: Kemper, P. (ed.) Proc. Tools Session of Aachen 2001 International Multiconference on Measurement, Modelling and Evaluation of Computer-Communication Systems, September 2001, pp. 7–12 (2001); Available as Technical Report 760/2001, University of Dortmund.Google Scholar
  16. 16.
    Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model checking with prism: A hybrid approach. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, p. 52. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Larsen, K., Skou, A.: Bisimulation through probabilistic testing. Information and Computation 94, 1–28 (1991)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
  19. 19.
    Nelson, B.L.: Stochastic Modeling: Analysis And Simulation. Dover Publications, New York (1995)MATHGoogle Scholar
  20. 20.
    Papoulis, A.: Probability, Random Variables and Stochastic Processes. McGraw-Hill Series in System Sciences (1965)Google Scholar
  21. 21.
    Della Penna, G., Intrigila, B., Melatti, I., Minichino, M., Ciancamerla, E., Parisse, A., Tronci, E., Zilli, M.V.: Automatic verification of a turbogas control system with the murphi verifier. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 141–155. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  22. 22.
    Della Penna, G., Intrigila, B., Melatti, I., Tronci, E., Zilli, M.V.: Finite horizon analysis of markov chains with the murphi verifier (2003) (submitted for publication)Google Scholar
  23. 23.
    Pnueli, A., Zuck, L.: Probabilistic verification. Information and Computation 103, 1–29 (1993)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
  25. 25.
    Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. In: Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 381–496. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  26. 26.
  27. 27.
  28. 28.
    Vardi, M.: Automatic verification of probabilistic concurrent finite-state programs. In: Proc. of FOCS 1985, pp. 327–338. IEEE CS Press, Los Alamitos (1985)Google Scholar
  29. 29.
  30. 30.
    de Alfaro, L., Henzinger, T.A., Majumdar, R.: Discounting the Future in Systems Theory. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1022–1037. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Giuseppe Della Penna
    • 1
  • Benedetto Intrigila
    • 1
  • Igor Melatti
    • 1
  • Enrico Tronci
    • 2
  • Marisa Venturini Zilli
    • 2
  1. 1.Dip. di InformaticaUniversità di L’Aquila, CoppitoL’AquilaItaly
  2. 2.Dip. di InformaticaUniversità di Roma “La Sapienza”RomaItaly

Personalised recommendations