Abstract

In this work we investigate bounded Lukasiewicz logics}, characterised as the intersection of the k-valued Lukasiewicz logics for k = 2, ..., n (n ≥ 2). These logics formalise a generalisation of Ulam’s game with applications in Information Theory. Here we provide an analytic proof calculus B n for each bounded Lukasiewicz logic, obtained by adding a single rule to , a hypersequent calculus for Lukasiewicz infinite-valued logic. We give a first cut-elimination proof for GL with (suitable forms of) cut rules. We then prove completeness for B n with cut and show that cut can also be eliminated in this case.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avron, A.: A constructive analysis of RM. J. of Symbolic Logic 52, 939–951 (1987)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Chang, C.C.: Algebraic analysis of many valued logics. Trans. Amer. Math. Soc. 88, 467–490 (1958)MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Ciabattoni, A.: Bounded contraction in systems with linearity. In: Murray, N.V. (ed.) TABLEAUX 1999. LNCS (LNAI), vol. 1617, pp. 113–127. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Cicalese, F.: Reliable Computation with Unreliable Information. PhD thesis, University of Salerno (2001), http://dia.unisa.it/cicalese.dir/thesis.html
  5. 5.
    Cignoli, R.L.O., Mundici, D., D’Ottaviano, I.M.L.: Algebraic Foundations of Many-valued Reasoning. Kluwer, Dordrecht (2000)MATHGoogle Scholar
  6. 6.
    Grigolia, R.: Algebraic analysis of Łukasiewicz-Tarski n-valued logical systems. In: Wójciki, R., Malinowski, G. (eds.) Selected Papers on Łukasiewicz Sentential Calculi, pp. 81–91. Polish Acad. of Sciences, Warsaw (1977)Google Scholar
  7. 7.
    Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)MATHGoogle Scholar
  8. 8.
    Łukasiewicz, J.: O logice trójwartościowej. Ruch Filozoficzny 5, 169–171 (1920)Google Scholar
  9. 9.
    McNaughton, R.: A theorem about infinite-valued sentential logic. Journal of Symbolic Logic 16(1), 1–13 (1951)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Metcalfe, G., Olivetti, N., Gabbay, D.: Analytic sequent calculi for abelian and Łukasiewicz logics. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, pp. 191–205. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Metcalfe, G., Olivetti, N., Gabbay, D.: Sequent and hypersequent calculi for Abelian and Łukasiewicz logics (2003) (submitted), http://arXiv.org/list/cs/0211
  12. 12.
    Mundici, D.: The logic of Ulam’s game with lies. In: Bicchieri, C., Dalla Chiara, M.L. (eds.) Knowledge, belief and strategic interaction, pp. 275–284. Cambridge University Press, Cambridge (1992)Google Scholar
  13. 13.
    Mundici, D.: Ulam’s game, Łukasiewicz logic and C ∗ -algebras. Fundamenta Informaticae 18, 151–161 (1993)MATHMathSciNetGoogle Scholar
  14. 14.
    Pelc, A.: Searching with known error probability. Theoretical Computer Science 63, 185–202 (1989)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Prijatelj, A.: Bounded contraction and Gentzen style formulation of Łukasiewicz logics. Studia Logica 57, 437–456 (1996)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Agata Ciabattoni
    • 1
  • George Metcalfe
    • 2
  1. 1.Institut für Algebra und ComputermathematikTechnische Universität WienWienAustria
  2. 2.Department of Computer ScienceKing’s College LondonLondonUK

Personalised recommendations