The Tableaux Work Bench (TWB) is a meta tableau system designed for logicians with limited programming or automatic reasoning knowledge to experiment with new tableau calculi and new decision procedures. It has a simple interface, a history mechanism for controlling loops or pruning the search space, and modal simplification.


Modal Logic Decision Procedure Intuitionistic Logic Sequent Calculus Proof Search 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abate, P.: Tableaux work bench (twb) – User Manual (2003),
  2. 2.
    Bornat, R., Sufrin, B.: Jape: A calculator for animating proof-on-paper. In: McCune, W. (ed.) CADE 1997. LNCS, vol. 1249, pp. 412–415. Springer, Heidelberg (1997)Google Scholar
  3. 3.
    Chailloux, E., Manoury, P., Pagano, B.: Développement d’applications avec Objective Caml. O’Reilly, Sebastopol (2000)Google Scholar
  4. 4.
    Fariñas del Cerro, L., Fauthoux, D., Gasquet, O., Herzig, A., Longin, D., Massacci, F.: Lotrec: the generic tableau prover for modal and description logics. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 453–458. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Fitting, M.: Proof Methods for Modal and Intuitionistic Logics. Synthese Library, vol. 169, D. Reidel, Dordrecht (1983)Google Scholar
  6. 6.
    Gabbay, D., Ohlbach, H.J.: Quantifier elimination in second order predicate logic. In: Proc. KR 1992 (1992)Google Scholar
  7. 7.
    Goré, R.: Tableau methods for modal and temporal logics. In: Handbook of Tableau Methods. ch. 6, pp. 297–396. Kluwer, Dordrecht (1999)Google Scholar
  8. 8.
    Heuerding, A.: LWBtheory: information about some propositional logics via the WWW. Logic Journal of the IGPL 4(4), 169–174 (1996)Google Scholar
  9. 9.
    Heuerding, A.: Sequent Calculi for Proof Search in some Modal Logics. PhDthesis, Institute for Applied Mathematics and Computer Science, University of Berne, Switzerland (1998)Google Scholar
  10. 10.
    Howe, J.M.: Proof Search Issues in Some Non-Classical Logics. PhD thesis, University of St Andrews (December 1998)Google Scholar
  11. 11.
    Howitt, C.: bloblogic (2002),
  12. 12.
    Horrocks, I., Patel-Schneider, P.F.: Optimising propositional modal satisfiability for description logic subsumption. In: Calmet, J., Plaza, J. (eds.) AISC 1998. LNCS (LNAI), vol. 1476, p. 234. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  13. 13.
    Hustadt, U., Schmidt, R.A.: MSPASS: Modal reasoning by translation and first-order resolution. In: Dyckhoff, R. (ed.) TABLEAUX 2000. LNCS, vol. 1847, pp. 67–71. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. 14.
    Massacci, F.: Simplification: a general constraint propagation technique for propositional and modal tableaux. In: de Swart, H. (ed.) TABLEAUX 1998. LNCS (LNAI), vol. 1397, pp. 217–231. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  15. 15.
    Mouri, M.: Theorem provers with counter-models and xpe. Bulletin of the Section of Logic 30(2), 79–86 (2001)zbMATHGoogle Scholar
  16. 16.
    Negri, S., von Plato, J.: Structural Proof Theory. In: CUP (2001)Google Scholar
  17. 17.
    Paulson, L.C.: A generic tableau prover and its integration with Isabelle. Journal of Universal Computer Science 5(3) (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Pietro Abate
    • 1
  • Rajeev Goré
    • 1
  1. 1.Australian National UniversityCanberraAustralia

Personalised recommendations